The compact weak topology on a Banach space.
Throughout [this paper], E and F will denote Banach spaces. The bounded weak topology on a Banach space E, noted bw(E) or simply bw, is defined as the finest topology that agrees with the weak topology on bounded sets. It is proved in [3] that bw(E) is a locally convex topology if and only if E is reflexive.In this paper we introduce the compact weak topology on a Banach space E, noted kw(E) or simply kw, as the finest topology that agrees with the weak topology on weakly compact subsets. Equivalently,...