Displaying 281 – 300 of 3166

Showing per page

An amalgamation of the Banach spaces associated with James and Schreier, Part II: Banach-algebra structure

Alistair Bird (2010)

Banach Center Publications

The James-Schreier spaces, defined by amalgamating James' quasi-reflexive Banach spaces and Schreier space, can be equipped with a Banach-algebra structure. We answer some questions relating to their cohomology and ideal structure, and investigate the relations between them. In particular we show that the James-Schreier algebras are weakly amenable but not amenable, and relate these algebras to their multiplier algebras and biduals.

An answer to a question of Cao, Reilly and Xiong

Zafer Ercan, S. Onal (2006)

Czechoslovak Mathematical Journal

We present a simple proof of a Banach-Stone type Theorem. The method used in the proof also provides an answer to a conjecture of Cao, Reilly and Xiong.

An approximation property with respect to an operator ideal

Juan Manuel Delgado, Cándido Piñeiro (2013)

Studia Mathematica

Given an operator ideal , we say that a Banach space X has the approximation property with respect to if T belongs to S T : S ( X ) ¯ τ c for every Banach space Y and every T ∈ (Y,X), τ c being the topology of uniform convergence on compact sets. We present several characterizations of this type of approximation property. It is shown that some of the existing approximation properties in the literature may be included in this setting.

An Example Concerning Valdivia Compact Spaces

Kalenda, Ondrej (1999)

Serdica Mathematical Journal

∗ Supported by Research grants GAUK 190/96 and GAUK 1/1998We prove that the dual unit ball of the space C0 [0, ω1 ) endowed with the weak* topology is not a Valdivia compact. This answers a question posed to the author by V. Zizler and has several consequences. Namely, it yields an example of an affine continuous image of a convex Valdivia compact (in the weak* topology of a dual Banach space) which is not Valdivia, and shows that the property of the dual unit ball being Valdivia is not an isomorphic...

Currently displaying 281 – 300 of 3166