Displaying 281 – 300 of 371

Showing per page

An approximation property with respect to an operator ideal

Juan Manuel Delgado, Cándido Piñeiro (2013)

Studia Mathematica

Given an operator ideal , we say that a Banach space X has the approximation property with respect to if T belongs to S T : S ( X ) ¯ τ c for every Banach space Y and every T ∈ (Y,X), τ c being the topology of uniform convergence on compact sets. We present several characterizations of this type of approximation property. It is shown that some of the existing approximation properties in the literature may be included in this setting.

An Example Concerning Valdivia Compact Spaces

Kalenda, Ondrej (1999)

Serdica Mathematical Journal

∗ Supported by Research grants GAUK 190/96 and GAUK 1/1998We prove that the dual unit ball of the space C0 [0, ω1 ) endowed with the weak* topology is not a Valdivia compact. This answers a question posed to the author by V. Zizler and has several consequences. Namely, it yields an example of an affine continuous image of a convex Valdivia compact (in the weak* topology of a dual Banach space) which is not Valdivia, and shows that the property of the dual unit ball being Valdivia is not an isomorphic...

An extension of Lorentz's almost convergence and applications in Banach spaces

Mercourakis, S., Vassiliadis, G. (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 40C99, 46B99.We investigate an extension of the almost convergence of G. G. Lorentz requiring that the means of a bounded sequence converge uniformly on a subset M of N. We also present examples of sequences α∈ l∞(N) whose sequences of translates (Tn α)n≥ 0 (where T is the left-shift operator on l∞(N)) satisfy: (a) Tn α, n ≥ 0 generates a subspace E(α) of l∞(N) that is isomorphically embedded into c0 while α is not almost convergent. (b) Tn...

An extension of Simons' inequality and applications.

Robert Deville, Catherine Finet (2001)

Revista Matemática Complutense

This article is devoted to an extension of Simons' inequality. As a consequence, having a pointwise converging sequence of functions, we get criteria of uniform convergence of an associated sequence of functions.

An extension of the Krein-Smulian theorem.

Antonio S. Granero (2006)

Revista Matemática Iberoamericana

Let X be a Banach space, u ∈ X** and K, Z two subsets of X**. Denote by d(u,Z) and d(K,Z) the distances to Z from the point u and from the subset K respectively. The Krein-Smulian Theorem asserts that the closed convex hull of a weakly compact subset of a Banach space is weakly compact; in other words, every w*-compact subset K ⊂ X** such that d(K,X) = 0 satisfies d(cow*(K),X) = 0.We extend this result in the following way: if Z ⊂ X is a closed subspace of X and K ⊂ X** is a w*-compact subset of...

An extension property for Banach spaces

Walden Freedman (2002)

Colloquium Mathematicae

A Banach space X has property (E) if every operator from X into c₀ extends to an operator from X** into c₀; X has property (L) if whenever K ⊆ X is limited in X**, then K is limited in X; X has property (G) if whenever K ⊆ X is Grothendieck in X**, then K is Grothendieck in X. In all of these, we consider X as canonically embedded in X**. We study these properties in connection with other geometric properties, such as the Phillips properties, the Gelfand-Phillips and weak Gelfand-Phillips properties,...

Currently displaying 281 – 300 of 371