Descriptive compact spaces and renorming
We study the class of descriptive compact spaces, the Banach spaces generated by descriptive compact subsets and their relation to renorming problems.
We study the class of descriptive compact spaces, the Banach spaces generated by descriptive compact subsets and their relation to renorming problems.
If E is a Banach space, any element x** in its bidual E** is an affine function on the dual unit ball that might possess a variety of descriptive properties with respect to the weak* topology. We prove several results showing that descriptive properties of x** are quite often determined by the behaviour of x** on the set of extreme points of , generalizing thus results of J. Saint Raymond and F. Jellett. We also prove a result on the relation between Baire classes and intrinsic Baire classes...
This paper was extensively circulated in manuscript form beginning in the Summer of 1989. It is being published here for the first time in its original form except for minor corrections, updated references and some concluding comments.
We prove a game-theoretic dichotomy for sets of block sequences in vector spaces that extends, on the one hand, the block Ramsey theorem of W. T. Gowers proved for analytic sets of block sequences and, on the other hand, M. Davis’ proof of Σ⁰₃ determinacy.
For a countable compact metric space and a seminormalized weakly null sequence (fₙ)ₙ in C() we provide some upper bounds for the norm of the vectors in the linear span of a subsequence of (fₙ)ₙ. These bounds depend on the complexity of and also on the sequence (fₙ)ₙ itself. Moreover, we introduce the class of c₀-hierarchies. We prove that for every α < ω₁, every normalized weakly null sequence (fₙ)ₙ in and every c₀-hierarchy generated by (fₙ)ₙ, there exists β ≤ α such that a sequence of β-blocks...
We introduce a seminorm for bounded linear operators between Banach spaces that shows the deviation from the weak Banach-Saks property. We prove that if (Xν) is a sequence of Banach spaces and a Banach sequence lattice E has the Banach-Saks property, then the deviation from the weak Banach-Saks property of an operator of a certain class between direct sums E(Xν) is equal to the supremum of such deviations attained on the coordinates Xν. This is a quantitative version for operators of the result...
Let E be a Banach space with 1-unconditional basis. Denote by (resp. ) the main diagonal space of the n-fold full (resp. symmetric) projective Banach space tensor product, and denote by (resp. ) the main diagonal space of the n-fold full (resp. symmetric) projective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic, and in addition, that they are isometrically lattice isomorphic to , the completion of the n-concavification of...
We present an equivalent midpoint locally uniformly rotund (MLUR) renorming of C[0,1] with the diameter 2 property (D2P), i.e. every non-empty relatively weakly open subset of the unit ball has diameter 2. An example of an MLUR space with the D2P and with convex combinations of slices of arbitrarily small diameter is also given.
We study the extremal structure of Banach spaces of continuous functions with the diameter norm.
Jachymski showed that the set is either a meager subset of or is equal to . In the paper we generalize this result by considering more general spaces than , namely , the space of all continuous functions which vanish at infinity, and , the space of all continuous bounded functions. Moreover, we replace the meagerness by -porosity.