Displaying 501 – 520 of 3161

Showing per page

Cartesian Products of Family of Real Linear Spaces

Hiroyuki Okazaki, Noboru Endou, Yasunari Shidama (2011)

Formalized Mathematics

In this article we introduced the isomorphism mapping between cartesian products of family of linear spaces [4]. Those products had been formalized by two different ways, i.e., the way using the functor [:X, Y:] and ones using the functor "product". By the same way, the isomorphism mapping was defined between Cartesian products of family of linear normed spaces also.

Characteristic of convexity of Musielak-Orlicz function spaces equipped with the Luxemburg norm

Henryk Hudzik, Thomas Landes (1992)

Commentationes Mathematicae Universitatis Carolinae

In this paper we extend the result of [6] on the characteristic of convexity of Orlicz spaces to the more general case of Musielak-Orlicz spaces over a non-atomic measure space. Namely, the characteristic of convexity of these spaces is computed whenever the Musielak-Orlicz functions are strictly convex.

Characterization of Bessel sequences.

M. Laura Arias, Gustavo Corach, Miriam Pacheco (2007)

Extracta Mathematicae

Let H be a separable Hilbert space, L(H) be the algebra of all bounded linear operators of H and Bess(H) be the set of all Bessel sequences of H. Fixed an orthonormal basis E = {ek}k∈N of H, a bijection αE: Bess(H) → L(H) can be defined. The aim of this paper is to characterize α-1E (A) for different classes of operators A ⊆ L(H). In particular, we characterize the Bessel sequences associated to injective operators, compact operators and Schatten p-classes.

Characterization of intermediate values of the triangle inequality II

Hiroki Sano, Tamotsu Izumida, Ken-Ichi Mitani, Tomoyoshi Ohwada, Kichi-Suke Saito (2014)

Open Mathematics

In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.

Characterization of Strongly Exposed Points in General Köthe-Bochner Banach Spaces

Houcine Benabdellah, My Hachem Lalaoui Rhali (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We study strongly exposed points in general Köthe-Bochner Banach spaces X(E). We first give a characterization of strongly exposed points of the set of X-selections of a measurable multifunction Γ. We then apply this result to the study of strongly exposed points of the closed unit ball of X(E). Precisely we show that if an element f is a strongly exposed point of B X ( E ) , then |f| is a strongly exposed point of B X and f(ω)/∥ f(ω)∥ is a strongly exposed point of B E for μ-almost all ω ∈ S(f).

Characterization of weak type by the entropy distribution of r-nuclear operators

Martin Defant, Marius Junge (1993)

Studia Mathematica

The dual of a Banach space X is of weak type p if and only if the entropy numbers of an r-nuclear operator with values in a Banach space of weak type q belong to the Lorentz sequence space s , r with 1/s + 1/p + 1/q = 1 + 1/r (0 < r < 1, 1 ≤ p, q ≤ 2). It is enough to test this for Y = X*. This extends results of Carl, König and Kühn.

Characterizations of almost transitive superreflexive Banach spaces

Julio Becerra Guerrero, Angel Rodriguez Palacios (2001)

Commentationes Mathematicae Universitatis Carolinae

Almost transitive superreflexive Banach spaces have been considered in [7] (see also [4] and [6]), where it is shown that such spaces are uniformly convex and uniformly smooth. We prove that convex transitive Banach spaces are either almost transitive and superreflexive (hence uniformly smooth) or extremely rough. The extreme roughness of a Banach space X means that, for every element u in the unit sphere of X , we have lim sup h 0 u + h + u - h - 2 h = 2 . We note that, in general, the property of convex transitivity for a Banach...

Characterizations of completeness of normed spaces through weakly unconditionally Cauchy series

Francisco Javier Pérez Fernández, F. Benítez-Trujillo, Antonio Aizpuru Tomás (2000)

Czechoslovak Mathematical Journal

In this paper we obtain two new characterizations of completeness of a normed space through the behaviour of its weakly unconditionally Cauchy series. We also prove that barrelledness of a normed space X can be characterized through the behaviour of its weakly- * unconditionally Cauchy series in X * .

Characterizations of elements of a double dual Banach space and their canonical reproductions

Vassiliki Farmaki (1993)

Studia Mathematica

For every element x** in the double dual of a separable Banach space X there exists the sequence ( x ( 2 n ) ) of the canonical reproductions of x** in the even-order duals of X. In this paper we prove that every such sequence defines a spreading model for X. Using this result we characterize the elements of X**╲ X which belong to the class B 1 ( X ) B 1 / 2 ( X ) (resp. to the class B 1 / 4 ( X ) ) as the elements with the sequence ( x ( 2 n ) ) equivalent to the usual basis of 1 (resp. as the elements with the sequence ( x ( 4 n - 2 ) - x ( 4 n ) ) equivalent to the usual basis...

Currently displaying 501 – 520 of 3161