Uniform convexity of Köthe-Bochner function spaces.
* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada).It is shown that the dual unit ball BX∗ of a Banach space X∗ in its weak star topology is a uniform Eberlein compact if and only if X admits a uniformly Gâteaux smooth norm and X is a subspace of a weakly compactly generated space. The bidual unit ball BX∗∗ of a Banach space X∗∗ in its weak star topology is a uniform Eberlein compact if and only if X admits a weakly uniformly rotund norm. In this case...
We prove uniform factorization results that describe the factorization of compact sets of compact and weakly compact operators via Hölder continuous homeomorphisms having Lipschitz continuous inverses. This yields, in particular, quantitative strengthenings of results of Graves and Ruess on the factorization through -spaces and of Aron, Lindström, Ruess, and Ryan on the factorization through universal spaces of Figiel and Johnson. Our method is based on the isometric version of the Davis-Figiel-Johnson-Pełczyński...
The aim of this paper is to show, among other things, that, in separable Banach spaces, the presence of the smoothness with the highest derivative Lipschitzian implies the uniform Gâteaux smoothness of degree 1 up.
2000 Mathematics Subject Classification: 46B20.Uniform G-convexity of Banach spaces is a recently introduced natural generalization of uniform convexity and of complex uniform convexity. We study conditions under which uniform G-convexity of X passes to the space of X-valued functions Lp (m,X).
Thirteen properties of uniform spaces are shown to be equivalent. The most important properties seem to be those related to modules of uniformly continuous mappings into normed spaces, and to partitions of unity.
We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of standard Hardy spaces (and of other scales of spaces), changing the size of the space seems necessary to deduce unconditionality...
We characterize the uniform non-squareness and the property of Besicovitch-Orlicz spaces of almost periodic functions equipped with Orlicz norm.
The concept of uniform convexity of a Banach space was gen- eralized to linear operators between Banach spaces and studied by Beauzamy [1]. Under this generalization, a Banach space X is uniformly convex if and only if its identity map Ix is. Pisier showe
The notion of a metric bead space was introduced in the preceding paper (L. Pasicki: Bead spaces and fixed point theorems, Topology Appl., vol. 156 (2009), 1811–1816) and it was proved there that every bounded set in such a space (provided the space is complete) has a unique central point. The bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces. It appears that normed bead spaces are identical with uniformly convex spaces. On the...
*Supported in part by GAˇ CR 201-98-1449 and AV 101 9003. This paper is based on a part of the author’s MSc thesis written under the supervison of Professor V. Zizler.It is shown that a Banach space X admits an equivalent uniformly Gateaux differentiable norm if it has an unconditional basis and X* admits an equivalent norm which is uniformly rotund in every direction.