Displaying 81 – 100 of 106

Showing per page

Binormality of Banach spaces

Petr Holický (1997)

Commentationes Mathematicae Universitatis Carolinae

We study binormality, a separation property of spaces endowed with two topologies known in the real analysis as the Luzin-Menchoff property. The main object of our interest are Banach spaces with their norm and weak topologies. We show that every separable Banach space is binormal and the space is not binormal.

Biorthogonal systems in Banach spaces

Michael A. Coco (2004)

Studia Mathematica

We give biorthogonal system characterizations of Banach spaces that fail the Dunford-Pettis property, contain an isomorphic copy of c₀, or fail the hereditary Dunford-Pettis property. We combine this with previous results to show that each infinite-dimensional Banach space has one of three types of biorthogonal systems.

Boolean Rings that are Baire Spaces

Haydon, R. (2001)

Serdica Mathematical Journal

∗ The present article was originally submitted for the second volume of Murcia Seminar on Functional Analysis (1989). Unfortunately it has been not possible to continue with Murcia Seminar publication anymore. For historical reasons the present vesion correspond with the original one.Weak completeness properties of Boolean rings are related to the property of being a Baire space (when suitably topologised) and to renorming properties of the Banach spaces of continuous functions on the corresponding...

Boundary of polyhedral spaces: an alternative proof.

Libor Vesely (2000)

Extracta Mathematicae

A Banach space X is called polyhedral if the unit ball of each one of its finite-dimensional (equivalently: two-dimensional [6]) subspaces is a polytope. Polyhedral spaces were studied by various authors; most of the structural results are due to V. Fonf. We refer the reader to the surveys [1], [2] for other definitions of polyhedrality, main properties and bibliography. In this paper we present a short alternative proof of the basic result on the structure of the unit ball of the polyhedral space...

Bounded analytic sets in Banach spaces

Volker Aurich (1986)

Annales de l'institut Fourier

Conditions are given which enable or disable a complex space X to be mapped biholomorphically onto a bounded closed analytic subset of a Banach space. They involve on the one hand the Radon-Nikodym property and on the other hand the completeness of the Caratheodory metric of X .

Boundedness and compactness of some operators on discrete Morrey spaces

Martha Guzmán-Partida (2021)

Commentationes Mathematicae Universitatis Carolinae

We consider discrete versions of Morrey spaces introduced by Gunawan et al. in papers published in 2018 and 2019. We prove continuity and compactness of multiplication operators and commutators acting on them.

Boundedness for a bilinear model sum operator on ℝⁿ

Erin Terwilleger (2007)

Studia Mathematica

The purpose of this article is to obtain a multidimensional extension of Lacey and Thiele's result on the boundedness of a model sum which plays a crucial role in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a simplification of the original proof of Lacey and Thiele modeled after the presentation of Bilyk and Grafakos.

Boundedness of linear maps

T. S. S. R. K. Rao (2000)

Commentationes Mathematicae Universitatis Carolinae

In this short note we consider necessary and sufficient conditions on normed linear spaces, that ensure the boundedness of any linear map whose adjoint maps extreme points of the unit ball of the domain space to continuous linear functionals.

Currently displaying 81 – 100 of 106