Previous Page 6

Displaying 101 – 106 of 106

Showing per page

Bounds for the spectral radius of positive operators

Roman Drnovšek (2000)

Commentationes Mathematicae Universitatis Carolinae

Let f be a non-zero positive vector of a Banach lattice L , and let T be a positive linear operator on L with the spectral radius r ( T ) . We find some groups of assumptions on L , T and f under which the inequalities sup { c 0 : T f c f } r ( T ) inf { c 0 : T f c f } hold. An application of our results gives simple upper and lower bounds for the spectral radius of a product of positive operators in terms of positive eigenvectors corresponding to the spectral radii of given operators. We thus extend the matrix result obtained by Johnson and Bru which...

Bourgain’s discretization theorem

Ohad Giladi, Assaf Naor, Gideon Schechtman (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

Bourgain’s discretization theorem asserts that there exists a universal constant C ( 0 , ) with the following property. Let X , Y be Banach spaces with dim X = n . Fix D ( 1 , ) and set δ = e - n C n . Assume that 𝒩 is a δ -net in the unit ball of X and that 𝒩 admits a bi-Lipschitz embedding into Y with distortion at most D . Then the entire space X admits a bi-Lipschitz embedding into Y with distortion at most C D . This mostly expository article is devoted to a detailed presentation of a proof of Bourgain’s theorem.We also obtain an improvement...

Currently displaying 101 – 106 of 106

Previous Page 6