Displaying 1281 – 1300 of 3166

Showing per page

Martingale operators and Hardy spaces generated by them

Ferenc Weisz (1995)

Studia Mathematica

Martingale Hardy spaces and BMO spaces generated by an operator T are investigated. An atomic decomposition of the space H p T is given if the operator T is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the B M O q spaces generated by an operator T are all equivalent. The sharp operator is also considered and it is verified that the L p norm of the sharp operator is equivalent to the H p T norm. The interpolation spaces between the Hardy and BMO spaces are identified by the real method....

Matrix subspaces of L₁

Gideon Schechtman (2013)

Studia Mathematica

If E = e i and F = f i are two 1-unconditional basic sequences in L₁ with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices a i , j with norm | | a i , j | | E ( F ) = | | k | | l a k , l f l | | e k | | embeds into L₁. This generalizes a recent result of Prochno and Schütt.

Mazur spaces.

Wilansky, Albert (1981)

International Journal of Mathematics and Mathematical Sciences

Mazur-Ulam Theorem

Artur Korniłowicz (2011)

Formalized Mathematics

The Mazur-Ulam theorem [15] has been formulated as two registrations: cluster bijective isometric -> midpoints-preserving Function of E, F; and cluster isometric midpoints-preserving -> Affine Function of E, F; A proof given by Jussi Väisälä [23] has been formalized.

M-complete approximate identities in operator spaces

A. Arias, H. Rosenthal (2000)

Studia Mathematica

This work introduces the concept of an M-complete approximate identity (M-cai) for a given operator subspace X of an operator space Y. M-cai’s generalize central approximate identities in ideals in C*-algebras, for it is proved that if X admits an M-cai in Y, then X is a complete M-ideal in Y. It is proved, using ’special’ M-cai’s, that if J is a nuclear ideal in a C*-algebra A, then J is completely complemented in Y for any (isomorphically) locally reflexive operator space Y with J ⊂ Y ⊂ A and...

Measure of non-compactness of operators interpolated by the real method

Radosław Szwedek (2006)

Studia Mathematica

We study the measure of non-compactness of operators between abstract real interpolation spaces. We prove an estimate of this measure, depending on the fundamental function of the space. An application to the spectral theory of linear operators is presented.

Measure of weak noncompactness under complex interpolation

Andrzej Kryczka, Stanisław Prus (2001)

Studia Mathematica

Logarithmic convexity of a measure of weak noncompactness for bounded linear operators under Calderón’s complex interpolation is proved. This is a quantitative version for weakly noncompact operators of the following: if T: A₀ → B₀ or T: A₁ → B₁ is weakly compact, then so is T : A [ θ ] B [ θ ] for all 0 < θ < 1, where A [ θ ] and B [ θ ] are interpolation spaces with respect to the pairs (A₀,A₁) and (B₀,B₁). Some formulae for this measure and relations to other quantities measuring weak noncompactness are established.

Measures of noncompactness and normal structure in Banach spaces

J. García-Falset, A. Jiménez-Melado, E. Lloréns-Fuster (1994)

Studia Mathematica

Sufficient conditions for normal structure of a Banach space are given. One of them implies reflexivity for Banach spaces with an unconditional basis, and also for Banach lattices.

Currently displaying 1281 – 1300 of 3166