Some remarks on the duality mapping
We show that the equality is a necessary condition for the validity of certain results about isomorphic properties in the projective tensor product of two Banach spaces under some approximation property type assumptions.
Let be a regular interpolation couple. Under several different assumptions on a fixed , we show that for every . We also deal with assumptions on , the closure of in the dual of .
We prove that if is not a Kunen cardinal, then there is a uniform Eberlein compact space K such that the Banach space C(K) does not embed isometrically into . We prove a similar result for isomorphic embeddings. Our arguments are minor modifications of the proofs of analogous results for Corson compacta obtained by S. Todorčević. We also construct a consistent example of a uniform Eberlein compactum whose space of continuous functions embeds isomorphically into , but fails to embed isometrically....
In order to study the absolute summability of an operator T we consider the set ST = {{xn} | ∑||Txn|| < ∞}. It is well known that an operator T in a Hilbert space is nuclear if and only if ST contains an orthonormal basis and it is natural to ask under which conditions two orthonormal basis define the same left ideal of nuclear operators. Using results about ST we solve this problem in the more general context of Banach spaces.
Some results are presented, concerning a class of Banach spaces introduced by G. Godefroy and M. Talagrand, the representable Banach spaces. The main aspects considered here are the stability in forming tensor products, and the topological properties of the weak* dual unitball.
We characterize the norm attaining bilinear forms on L1[0,1], and show that the set of norm attaining ones is not dense in the space of continuous bilinear forms on L1[0,1].
We establish some properties of the class of order weakly compact operators on Banach lattices. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms.
We present monotonicity theorems for index functions of N-fuctions, and obtain formulas for exact values of packing constants. In particular, we show that the Orlicz sequence space generated by the N-function N(v) = (1+|v|)ln(1+|v|) - |v| with Luxemburg norm has the Kottman constant , which answers M. M. Rao and Z. D. Ren’s [8] problem.