Displaying 1781 – 1800 of 3166

Showing per page

On the convergence of certain sums of independent random elements

Juan Carlos Ferrando (2002)

Commentationes Mathematicae Universitatis Carolinae

In this note we investigate the relationship between the convergence of the sequence { S n } of sums of independent random elements of the form S n = i = 1 n ε i x i (where ε i takes the values ± 1 with the same probability and x i belongs to a real Banach space X for each i ) and the existence of certain weakly unconditionally Cauchy subseries of n = 1 x n .

On the diameter of the Banach-Mazur set

Gilles Godefroy (2010)

Czechoslovak Mathematical Journal

On every subspace of l ( ) which contains an uncountable ω -independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin’s Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of l ( ) is infinite. This provides a partial answer to a question asked by Johnson and Odell.

On the distribution of random variables corresponding to Musielak-Orlicz norms

David Alonso-Gutiérrez, Sören Christensen, Markus Passenbrunner, Joscha Prochno (2013)

Studia Mathematica

Given a normalized Orlicz function M we provide an easy formula for a distribution such that, if X is a random variable distributed accordingly and X₁,...,Xₙ are independent copies of X, then 1 / C p | | x | | M | | ( x i X i ) i = 1 | | p C p | | x | | M , where C p is a positive constant depending only on p. In case p = 2 we need the function t ↦ tM’(t) - M(t) to be 2-concave and as an application immediately obtain an embedding of the corresponding Orlicz spaces into L₁[0,1]. We also provide a general result replacing the p -norm by an arbitrary N-norm. This...

On the Dunford-Pettis property of tensor product spaces

Ioana Ghenciu (2011)

Colloquium Mathematicae

We give sufficient conditions on Banach spaces E and F so that their projective tensor product E π F and the duals of their projective and injective tensor products do not have the Dunford-Pettis property. We prove that if E* does not have the Schur property, F is infinite-dimensional, and every operator T:E* → F** is completely continuous, then ( E ϵ F ) * does not have the DPP. We also prove that if E* does not have the Schur property, F is infinite-dimensional, and every operator T: F** → E* is completely...

On the embedding of 2-concave Orlicz spaces into L¹

Carsten Schütt (1995)

Studia Mathematica

In [K-S 1] it was shown that A v e π ( i = 1 n | x i a π ( i ) | 2 ) 1 / 2 is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence a 1 , . . . , a n so that the above expression is equivalent to a given Orlicz norm.

On the equality between some classes of operators on Banach lattices

Belmesnaoui Aqzzouz, Aziz Elbour, Mohammed Moussa (2012)

Mathematica Bohemica

We establish some sufficient conditions under which the subspaces of Dunford-Pettis operators, of M-weakly compact operators, of L-weakly compact operators, of weakly compact operators, of semi-compact operators and of compact operators coincide and we give some consequences.

Currently displaying 1781 – 1800 of 3166