The search session has expired. Please query the service again.
Displaying 221 –
240 of
390
Soit un espace localement compact. Tout opérateur dissipatif de domaine dense dans est limite d’opérateurs dissipatifs bornés. Ce résultat permet, dans le cas où est un espace homogène, de démontrer que tout opérateur dissipatif, de domaine dense et invariant sur se prolonge en le générateur infinitésimal d’un semi-groupe à contraction invariant sur .À tout opérateur vérifiant le principe du maximum positif sur et de domaine assez riche, on associe un opérateur bilinéaire , appelé...
The aim of this paper is the study of a certain class of compact-like sets within some spaces of continuous functions over non-Archimedean ground fields. As a result, some p-adic Ascoli theorems are obtained.
Properties of the so called -complete topological spaces are investigated. Also, necessary and sufficient conditions are given so that the space of all continuous functions, from a zero-dimensional topological space to a non-Archimedean locally convex space , equipped with the topology of uniform convergence on the compact subsets of to be polarly barrelled or polarly quasi-barrelled.
We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.
Suppose is an ordered locally convex space, and Hausdorff completely regular spaces and a uniformly bounded, convex and closed subset of . For , let . Then, under some topological and order conditions on , necessary and sufficient conditions are established for the existence of an element in , having marginals and .
This note brings a complement to the study of genericity of functions which are nowhere analytic mainly in a measure-theoretic sense. We extend this study to Gevrey classes of functions.
The weighted inductive limit of Fréchet spaces of entire functions in N variables which is obtained as the Fourier-Laplace transform of the space of analytic functionals on an open convex subset of can be described algebraically as the intersection of a family of weighted Banach spaces of entire functions. The corresponding result for the spaces of quasianalytic functionals is also derived.
We introduce pseudodifferential operators (of infinite order) in the framework of non-quasianalytic classes of Beurling type. We prove that such an operator with (distributional) kernel in a given Beurling class is pseudo-local and can be locally decomposed, modulo a smoothing operator, as the composition of a pseudodifferential operator of finite order and an ultradifferential operator with constant coefficients in the sense of Komatsu, both operators with kernel in the same class . We also...
Currently displaying 221 –
240 of
390