On sequentially M-integrable distributions
In this article, it is shown that geometrical properties such as local uniform convexity, mid point local uniform convexity, H-property and uniform convexity in every direction are equivalent in the Besicovitch-Musielak-Orlicz space of almost periodic functions endowed with the Luxemburg norm.
The paper is concerned with the characterization and comparison of some local geometric properties of the Besicovitch-Orlicz space of almost periodic functions. Namely, it is shown that local uniform convexity, -property and strict convexity are all equivalent. In our approach, we first prove some metric type properties for the modular function associated to our space. These are then used to prove our main equivalence result.
Criteria for full k-rotundity (k ∈ ℕ, k ≥ 2) and uniform rotundity in every direction of Calderón-Lozanovskiĭ spaces are formulated. A characterization of -points in these spaces is also given.
We will present relationships between the modular ρ* and the norm in the dual spaces in the case when a Musielak-Orlicz space is equipped with the Orlicz norm. Moreover, criteria for extreme points of the unit sphere of the dual space will be presented.
In this paper the spaces of type Sobolev-Morrey-W p,a,г,τl(Q,G)-are constructed, the differential properties are studied and it is proved that the functions from these spaces satisfy Holder's condition, in the case, if the domain G∋R n satisfies the flexible λ-horn condition.
In this paper the notions of uniformly upper and uniformly lower -estimates for Banach function spaces are introduced. Further, the pair of Banach function spaces is characterized, where and satisfy uniformly a lower -estimate and uniformly an upper -estimate, respectively. The integral operator from into of the form is studied, where , , are prescribed functions under some local integrability conditions, the kernel is non-negative and is assumed to satisfy certain additional...