Displaying 101 – 120 of 216

Showing per page

On the -characteristic of fractional powers of linear operators

Jürgen Appell, Marilda A. Simões, Petr P. Zabrejko (1994)

Commentationes Mathematicae Universitatis Carolinae

We describe the geometric structure of the -characteristic of fractional powers of bounded or compact linear operators over domains with arbitrary measure. The description builds essentially on the Riesz-Thorin and Marcinkiewicz-Stein-Weiss- Ovchinnikov interpolation theorems, as well as on the Krasnosel’skij-Krejn factorization theorem.

On the closure of spaces of sums of ridge functions and the range of the X -ray transform

Jan Boman (1984)

Annales de l'institut Fourier

For a R n { 0 } and Ω an open bounded subset of R n definie L p ( Ω , a ) as the closed subset of L p ( Ω ) consisting of all functions that are constant almost everywhere on almost all lines parallel to a . For a given set of directions a ν R n { 0 } , ν = 1 , ... , m , we study for which Ω it is true that the vector space ( * ) L p ( Ω , a 1 ) + + L p ( Ω , a m ) is a closed subspace of L p ( Ω ) . This problem arizes naturally in the study of image reconstruction from projections (tomography). An essentially equivalent problem is to decide whether a certain matrix-valued differential operator has closed range. If Ω R 2 , the boundary...

On the continuity of Bessel potentials in Orlicz spaces.

N. Aïssaoui (1996)

Collectanea Mathematica

It is shown that Bessel capacities in reflexive Orlicz spaces are non increasing under orthogonal projection of sets. This is used to get a continuity of potentials on some subspaces. The obtained results generalize those of Meyers and Reshetnyak in the case of Lebesgue classes.

On the embedding of 2-concave Orlicz spaces into L¹

Carsten Schütt (1995)

Studia Mathematica

In [K-S 1] it was shown that A v e π ( i = 1 n | x i a π ( i ) | 2 ) 1 / 2 is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence a 1 , . . . , a n so that the above expression is equivalent to a given Orlicz norm.

Currently displaying 101 – 120 of 216