On the existence of exactly one solution of integral equations in the space with a mixed norm
Necessary and sufficient conditions are found for the exponential Orlicz norm (generated by with 0 < p ≤ 2) of or to be finite, where is a standard Brownian motion and τ is a stopping time for B. The conditions are in terms of the moments of the stopping time τ. For instance, we find that as soon as for some constant C > 0 as k → ∞ (or equivalently ). In particular, if τ ∼ Exp(λ) or then the last condition is satisfied, and we obtain with some universal constant K > 0....
In one of the earliest monographs that involve the notion of a Schauder basis, Franklin showed that the Gram-Schmidt orthonormalization of a certain Schauder basis for the Banach space of functions continuous on [0,1] is again a Schauder basis for that space. Subsequently, Ciesielski observed that the Gram-Schmidt orthonormalization of any Schauder system is a Schauder basis not only for C[0,1], but also for each of the spaces , 1 ≤ p < ∞. Although perhaps not probable, the latter result would...
Characterization of the mapping properties such as boundedness, compactness, measure of non-compactness and estimates of the approximation numbers of Hardy-type integral operators in Banach function spaces are given.
We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of spaces, where is a Young function and is a quasi-Banach function space on a -finite measure space .
Boulahia and the present authors introduced the Orlicz norm in the class -a.p. of Besicovitch-Orlicz almost periodic functions and gave several formulas for it; they also characterized the reflexivity of this space [Comment. Math. Univ. Carolin. 43 (2002)]. In the present paper, we consider the problem of k-convexity of -a.p. with respect to the Orlicz norm; we give necessary and sufficient conditions in terms of strict convexity and reflexivity.
In this paper, we obtain criteria for KR and WKR points in Orlicz function spaces equipped with the Luxemburg norm.
In the paper, a sufficient and necessary condition is given for the locally uniformly weak star rotundity of Orlicz spaces with Orlicz norms.