Displaying 141 – 160 of 216

Showing per page

On the spectral properties of translation operators in one-dimensional tubes

Wojciech Hyb (1991)

Annales Polonici Mathematici

We study the spectral properties of some group of unitary operators in the Hilbert space of square Lebesgue integrable holomorphic functions on a one-dimensional tube (see formula (1)). Applying the Genchev transform ([2], [5]) we prove that this group has continuous simple spectrum (Theorem 4) and that the projection-valued measure for this group has a very explicit form (Theorem 5).

On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces

Abdelkefi, Chokri, Sifi, Mohamed (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 44A15, 44A35, 46E30In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.* Supported by 04/UR/15-02.

Currently displaying 141 – 160 of 216