Displaying 161 – 180 of 216

Showing per page

On the weak L 1 space and singular measures

Robert Kaufman (1982)

Annales de l'institut Fourier

We study the class of singular measures whose Fourier partial sums converge to 0 in the metric of the weak L 1 space; symmetric sets of constant ratio occur in an unexpected way.

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. Astashkin, F. Sukochev, D. Zanin (2015)

Studia Mathematica

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.

On very weak solutions of a class of nonlinear elliptic systems

Menita Carozza, Antonia Passarelli di Napoli (2000)

Commentationes Mathematicae Universitatis Carolinae

In this paper we prove a regularity result for very weak solutions of equations of the type - div A ( x , u , D u ) = B ( x , u , D u ) , where A , B grow in the gradient like t p - 1 and B ( x , u , D u ) is not in divergence form. Namely we prove that a very weak solution u W 1 , r of our equation belongs to W 1 , p . We also prove global higher integrability for a very weak solution for the Dirichlet problem - div A ( x , u , D u ) = B ( x , u , D u ) in Ω , u - u o W 1 , r ( Ω , m ) .

On weak topology of Orlicz spaces.

Shutao Chen, Huiying Sun (1993)

Collectanea Mathematica

This paper presents some properties of singular functionals on Orlicz spaces, from which criteria for weak convergence and weak compactness in such spaces are obtained.

On ω-convex functions

Tomasz Szostok (2011)

Banach Center Publications

In Orlicz spaces theory some strengthened version of the Jensen inequality is often used to obtain nice geometrical properties of the Orlicz space generated by the Orlicz function satisfying this inequality. Continuous functions satisfying the classical Jensen inequality are just convex which means that such functions may be described geometrically in the following way: a segment joining every pair of points of the graph lies above the graph of such a function. In the current paper we try to obtain...

Currently displaying 161 – 180 of 216