Displaying 61 – 80 of 110

Showing per page

Direct and Reverse Gagliardo-Nirenberg Inequalities from Logarithmic Sobolev Inequalities

Matteo Bonforte, Gabriele Grillo (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

We investigate the connection between certain logarithmic Sobolev inequalities and generalizations of Gagliardo-Nirenberg inequalities. A similar connection holds between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo-Nirenberg inequalities.

Disjoint hypercyclic powers of weighted translations on groups

Liang Zhang, Hui-Qiang Lu, Xiao-Mei Fu, Ze-Hua Zhou (2017)

Czechoslovak Mathematical Journal

Let G be a locally compact group and let 1 p < . Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space L p ( G ) in terms of the weights. Sufficient and...

Disjoint strict singularity of inclusions between rearrangement invariant spaces

Francisco L. Hernández, Víctor M. Sánchez, Evgueni M. Semenov (2001)

Studia Mathematica

It is studied when inclusions between rearrangement invariant function spaces on the interval [0,∞) are disjointly strictly singular operators. In particular suitable criteria, in terms of the fundamental function, for the inclusions L ¹ L E and E L ¹ + L to be disjointly strictly singular are shown. Applications to the classes of Lorentz and Marcinkiewicz spaces are given.

Disjointification of martingale differences and conditionally independent random variables with some applications

Sergey Astashkin, Fedor Sukochev, Chin Pin Wong (2011)

Studia Mathematica

Disjointification inequalities are proven for arbitrary martingale difference sequences and conditionally independent random variables of the form f k ( s ) x k ( t ) k = 1 , where f k ’s are independent and xk’s are arbitrary random variables from a symmetric space X on [0,1]. The main results show that the form of these inequalities depends on which side of L₂ the space X lies on. The disjointification inequalities obtained allow us to compare norms of sums of martingale differences and non-negative random variables with...

Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann ζ -function

Nikolai Nikolski (1995)

Annales de l'institut Fourier

It is proved that a subspace of a holomorphic Hilbert space is completely determined by their distances to the reproducing kernels. A simple rule is established to localize common zeros of a subspace of the Hardy space of the unit disc. As an illustration we show a series of discs of the complex plan free of zeros of the Riemann ζ -function.

Distribution and rearrangement estimates of the maximal function and interpolation

Irina Asekritova, Natan Krugljak, Lech Maligranda, Lars-Erik Persson (1997)

Studia Mathematica

There are given necessary and sufficient conditions on a measure dμ(x)=w(x)dx under which the key estimates for the distribution and rearrangement of the maximal function due to Riesz, Wiener, Herz and Stein are valid. As a consequence, we obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for the Lebesgue measure. Our main tools are estimates of the distribution of the averaging function f** and a modified version of the Calderón-Zygmund decomposition. Analogous...

Division and extension in weighted Bergman-Sobolev spaces.

Joaquín M. Ortega, Joan Fàbrega (1992)

Publicacions Matemàtiques

Let D be a bounded strictly pseudoconvex domain of Cn with C ∞ boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D.In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space vanishing on M = Y ∩ D. Also we give necessary and sufficient conditions on a set of holomorphic functions {fα}|α|≤m on M, so that there exists a holomorphic function in the...

Domains of Dirichlet forms and effective resistance estimates on p.c.f. fractals

Jiaxin Hu, Xingsheng Wang (2006)

Studia Mathematica

We consider post-critically finite self-similar fractals with regular harmonic structures. We first obtain effective resistance estimates in terms of the Euclidean metric, which in particular imply the embedding theorem for the domains of the Dirichlet forms associated with the harmonic structures. We then characterize the domains of the Dirichlet forms.

Currently displaying 61 – 80 of 110