Displaying 81 – 100 of 110

Showing per page

Domains of integral operators

Iwo Labuda, Paweł Szeptycki (1994)

Studia Mathematica

It is shown that the proper domains of integral operators have separating duals but in general they are not locally convex. Banach function spaces which can occur as proper domains are characterized. Some known and some new results are given, illustrating the usefulness of the notion of proper domain.

Dominated ergodic theorems in rearrangement invariant spaces

Michael Braverman, Ben-Zion Rubshtein, Alexander Veksler (1998)

Studia Mathematica

We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces L p and the classes L l o g n L .

Double exponential integrability, Bessel potentials and embedding theorems

David Edmunds, Petr Gurka, Bohumír Opic (1995)

Studia Mathematica

This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.

Dual Spaces and Hahn-Banach Theorem

Keiko Narita, Noboru Endou, Yasunari Shidama (2014)

Formalized Mathematics

In this article, we deal with dual spaces and the Hahn-Banach Theorem. At the first, we defined dual spaces of real linear spaces and proved related basic properties. Next, we defined dual spaces of real normed spaces. We formed the definitions based on dual spaces of real linear spaces. In addition, we proved properties of the norm about elements of dual spaces. For the proof we referred to descriptions in the article [21]. Finally, applying theorems of the second section, we proved the Hahn-Banach...

Dual spaces of local Morrey-type spaces

Amiran Gogatishvili, Rza Mustafayev (2011)

Czechoslovak Mathematical Journal

In this paper we show that associated spaces and dual spaces of the local Morrey-type spaces are so called complementary local Morrey-type spaces. Our method is based on an application of multidimensional reverse Hardy inequalities.

Dual spaces to Orlicz-Lorentz spaces

Anna Kamińska, Karol Leśnik, Yves Raynaud (2014)

Studia Mathematica

For an Orlicz function φ and a decreasing weight w, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz-Lorentz function space Λ φ , w or the sequence space λ φ , w , equipped with either the Luxemburg or Amemiya norms. The first description is via the modular i n f φ ( f * / | g | ) | g | : g w , where f* is the decreasing rearrangement of f, ≺ denotes submajorization, and φ⁎ is the complementary function to φ. The second description is in terms of the modular I φ ( ( f * ) / w ) w ,where (f*)⁰ is Halperin’s level function...

Duality of matrix-weighted Besov spaces

Svetlana Roudenko (2004)

Studia Mathematica

We determine the duals of the homogeneous matrix-weighted Besov spaces p α q ( W ) and p α q ( W ) which were previously defined in [5]. If W is a matrix A p weight, then the dual of p α q ( W ) can be identified with p ' - α q ' ( W - p ' / p ) and, similarly, [ p α q ( W ) ] * p ' - α q ' ( W - p ' / p ) . Moreover, for certain W which may not be in the A p class, the duals of p α q ( W ) and p α q ( W ) are determined and expressed in terms of the Besov spaces p ' - α q ' ( A Q - 1 ) and p ' - α q ' ( A Q - 1 ) , which we define in terms of reducing operators A Q Q associated with W. We also develop the basic theory of these reducing operator Besov spaces. Similar...

Duality on vector-valued weighted harmonic Bergman spaces

Salvador Pérez-Esteva (1996)

Studia Mathematica

We study the duals of the spaces A p α ( X ) of harmonic functions in the unit ball of n with values in a Banach space X, belonging to the Bochner L p space with weight ( 1 - | x | ) α , denoted by L p α ( X ) . For 0 < α < p-1 we construct continuous projections onto A p α ( X ) providing a decomposition L p α ( X ) = A p α ( X ) + M p α ( X ) . We discuss the conditions on p, α and X for which A p α ( X ) * = A q α ( X * ) and M p α ( X ) * = M q α ( X * ) , 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.

Duality properties and Riesz representation theorem in Besicovitch-Musielak-Orlicz space of almost periodic functions

A. Daoui, Mohamed Morsli, M. Smaali (2012)

Commentationes Mathematicae Universitatis Carolinae

This paper is an extension of the work done in [Morsli M., Bedouhene F., Boulahia F., Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 43 (2002), no. 1, 103--117] to the Besicovitch-Musielak-Orlicz space of almost periodic functions. Necessary and sufficient conditions for the reflexivity of this space are given. A Riesz type ``duality representation theorem'' is also stated.

Duality theory of spaces of vector-valued continuous functions

Marian Nowak, Aleksandra Rzepka (2005)

Commentationes Mathematicae Universitatis Carolinae

Let X be a completely regular Hausdorff space, E a real normed space, and let C b ( X , E ) be the space of all bounded continuous E -valued functions on X . We develop the general duality theory of the space C b ( X , E ) endowed with locally solid topologies; in particular with the strict topologies β z ( X , E ) for z = σ , τ , t . As an application, we consider criteria for relative weak-star compactness in the spaces of vector measures M z ( X , E ' ) for z = σ , τ , t . It is shown that if a subset H of M z ( X , E ' ) is relatively σ ( M z ( X , E ' ) , C b ( X , E ) ) -compact, then the set conv ( S ( H ) ) is still relatively σ ( M z ( X , E ' ) , C b ( X , E ) ) -compact...

Currently displaying 81 – 100 of 110