Displaying 61 – 80 of 350

Showing per page

Singularities in Muckenhoupt weighted function spaces

Dorothee D. Haroske (2008)

Banach Center Publications

We study weighted function spaces of Lebesgue, Besov and Triebel-Lizorkin type where the weight function belongs to some Muckenhoupt p class. The singularities of functions in these spaces are characterised by means of envelope functions.

Smooth approximation in weighted Sobolev spaces

Tero Kilpeläinen (1997)

Commentationes Mathematicae Universitatis Carolinae

We give necessary and sufficient conditions for the equality H = W in weighted Sobolev spaces. We also establish a Rellich-Kondrachov compactness theorem as well as a Lusin type approximation by Lipschitz functions in weighted Sobolev spaces.

Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)

Marián Fabian, Sebastián Lajara (2012)

Studia Mathematica

We show that, if μ is a probability measure and X is a Banach space, then the space L¹(μ,X) of Bochner integrable functions admits an equivalent Gâteaux (or uniformly Gâteaux) smooth norm provided that X has such a norm, and that if X admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then L¹(μ,X) has an equivalent renorming whose restriction to every reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.

Smoothness in Musielak-Orlicz spaces equipped with the Orlicz norm.

Henryk Hudzik, Zenon Zbaszyniak (1997)

Collectanea Mathematica

A formula for the distance of an arbitrary element x in Musielak-Orlicz space L^Phi from the subspace E^Phi of order continuous elements is given for both (the Luxemburg and the Orlicz) norms. A formula for the norm in the dual space of L^Phi is given for any of these two norms. Criteria for smooth points and smoothness in L^Phi and E^Phi equipped with the Orlicz norm are presented.

Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces

Marco Biroli, Umberto Mosco (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.

Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces

Takao Ohno, Tetsu Shimomura (2014)

Czechoslovak Mathematical Journal

Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev's inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger's inequality and the continuity for Riesz potentials.

Currently displaying 61 – 80 of 350