Displaying 881 – 900 of 4028

Showing per page

Distribution and rearrangement estimates of the maximal function and interpolation

Irina Asekritova, Natan Krugljak, Lech Maligranda, Lars-Erik Persson (1997)

Studia Mathematica

There are given necessary and sufficient conditions on a measure dμ(x)=w(x)dx under which the key estimates for the distribution and rearrangement of the maximal function due to Riesz, Wiener, Herz and Stein are valid. As a consequence, we obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for the Lebesgue measure. Our main tools are estimates of the distribution of the averaging function f** and a modified version of the Calderón-Zygmund decomposition. Analogous...

Division and extension in weighted Bergman-Sobolev spaces.

Joaquín M. Ortega, Joan Fàbrega (1992)

Publicacions Matemàtiques

Let D be a bounded strictly pseudoconvex domain of Cn with C ∞ boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D.In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space vanishing on M = Y ∩ D. Also we give necessary and sufficient conditions on a set of holomorphic functions {fα}|α|≤m on M, so that there exists a holomorphic function in the...

Domains of Dirichlet forms and effective resistance estimates on p.c.f. fractals

Jiaxin Hu, Xingsheng Wang (2006)

Studia Mathematica

We consider post-critically finite self-similar fractals with regular harmonic structures. We first obtain effective resistance estimates in terms of the Euclidean metric, which in particular imply the embedding theorem for the domains of the Dirichlet forms associated with the harmonic structures. We then characterize the domains of the Dirichlet forms.

Domains of integral operators

Iwo Labuda, Paweł Szeptycki (1994)

Studia Mathematica

It is shown that the proper domains of integral operators have separating duals but in general they are not locally convex. Banach function spaces which can occur as proper domains are characterized. Some known and some new results are given, illustrating the usefulness of the notion of proper domain.

Dominated ergodic theorems in rearrangement invariant spaces

Michael Braverman, Ben-Zion Rubshtein, Alexander Veksler (1998)

Studia Mathematica

We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces L p and the classes L l o g n L .

Double exponential integrability, Bessel potentials and embedding theorems

David Edmunds, Petr Gurka, Bohumír Opic (1995)

Studia Mathematica

This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.

Dual Spaces and Hahn-Banach Theorem

Keiko Narita, Noboru Endou, Yasunari Shidama (2014)

Formalized Mathematics

In this article, we deal with dual spaces and the Hahn-Banach Theorem. At the first, we defined dual spaces of real linear spaces and proved related basic properties. Next, we defined dual spaces of real normed spaces. We formed the definitions based on dual spaces of real linear spaces. In addition, we proved properties of the norm about elements of dual spaces. For the proof we referred to descriptions in the article [21]. Finally, applying theorems of the second section, we proved the Hahn-Banach...

Dual spaces of local Morrey-type spaces

Amiran Gogatishvili, Rza Mustafayev (2011)

Czechoslovak Mathematical Journal

In this paper we show that associated spaces and dual spaces of the local Morrey-type spaces are so called complementary local Morrey-type spaces. Our method is based on an application of multidimensional reverse Hardy inequalities.

Dual spaces to Orlicz-Lorentz spaces

Anna Kamińska, Karol Leśnik, Yves Raynaud (2014)

Studia Mathematica

For an Orlicz function φ and a decreasing weight w, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz-Lorentz function space Λ φ , w or the sequence space λ φ , w , equipped with either the Luxemburg or Amemiya norms. The first description is via the modular i n f φ ( f * / | g | ) | g | : g w , where f* is the decreasing rearrangement of f, ≺ denotes submajorization, and φ⁎ is the complementary function to φ. The second description is in terms of the modular I φ ( ( f * ) / w ) w ,where (f*)⁰ is Halperin’s level function...

Currently displaying 881 – 900 of 4028