Displaying 541 – 560 of 928

Showing per page

On the range of convolution operators on non-quasianalytic ultradifferentiable functions

Jóse Bonet, Antonio Galbis, R. Meise (1997)

Studia Mathematica

Let ( ω ) ( Ω ) denote the non-quasianalytic class of Beurling type on an open set Ω in n . For μ ( ω ) ' ( n ) the surjectivity of the convolution operator T μ : ( ω ) ( Ω 1 ) ( ω ) ( Ω 2 ) is characterized by various conditions, e.g. in terms of a convexity property of the pair ( Ω 1 , Ω 2 ) and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator S μ : D ω ' ( Ω 1 ) D ω ' ( Ω 2 ) between ultradistributions of Roumieu type whenever μ ω ' ( n ) . These...

On the sign of Colombeau functions and applications to conservation laws

Jiří Jelínek, Dalibor Pražák (2009)

Commentationes Mathematicae Universitatis Carolinae

A generalized concept of sign is introduced in the context of Colombeau algebras. It extends the sign of the point-value in the case of sufficiently regular functions. This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws.

On the support of Fourier transform of weighted distributions

Martha Guzmán-Partida (2010)

Commentationes Mathematicae Universitatis Carolinae

We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region x 1 0 and x 2 0 .

Currently displaying 541 – 560 of 928