On the non-commutative neutrix product of and .
Let denote the non-quasianalytic class of Beurling type on an open set Ω in . For the surjectivity of the convolution operator is characterized by various conditions, e.g. in terms of a convexity property of the pair and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator between ultradistributions of Roumieu type whenever . These...
A generalized concept of sign is introduced in the context of Colombeau algebras. It extends the sign of the point-value in the case of sufficiently regular functions. This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws.
We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region and .