Displaying 41 – 60 of 65

Showing per page

Continuation of holomorphic solutions to convolution equations in complex domains

Ryuichi Ishimura, Jun-ichi Okada, Yasunori Okada (2000)

Annales Polonici Mathematici

For an analytic functional S on n , we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in n . We determine the directions in which every solution can be continued analytically, by using the characteristic set.

Continuity of the fundamental operations on distributions having a specified wave front set (with a counterexample by Semyon Alesker)

Christian Brouder, Nguyen Viet Dang, Frédéric Hélein (2016)

Studia Mathematica

The pull-back, push-forward and multiplication of smooth functions can be extended to distributions if their wave front sets satisfy some conditions. Thus, it is natural to investigate the topological properties of these operations between spaces Γ ' of distributions having a wave front set included in a given closed cone Γ of the cotangent space. As discovered by S. Alesker, the pull-back is not continuous for the usual topology on Γ ' , and the tensor product is not separately continuous. In this paper,...

Convolution equations in the space of Laplace distributions

Maria E. Pliś (1998)

Annales Polonici Mathematici

A formal solution of a nonlinear equation P(D)u = g(u) in 2 variables is constructed using the Laplace transformation and a convolution equation. We assume some conditions on the characteristic set Char P.

Currently displaying 41 – 60 of 65