The search session has expired. Please query the service again.

Previous Page 6

Displaying 101 – 106 of 106

Showing per page

Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type

Thomas Meyer (1997)

Studia Mathematica

Let ε ω ( I ) denote the space of all ω-ultradifferentiable functions of Roumieu type on an open interval I in ℝ. In the special case ω(t) = t we get the real-analytic functions on I. For μ ε ω ( I ) ' with s u p p ( μ ) = 0 one can define the convolution operator T μ : ε ω ( I ) ε ω ( I ) , T μ ( f ) ( x ) : = μ , f ( x - · ) . We give a characterization of the surjectivity of T μ for quasianalytic classes ε ω ( I ) , where I = ℝ or I is an open, bounded interval in ℝ. This characterization is given in terms of the distribution of zeros of the Fourier Laplace transform μ ^ of μ.

Systems of convolution equations and LAU-spaces

Daniele C. Struppa (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Dato un sistema omogeneo di equazioni di convoluzione in spazi dotati di strutture analiticamente uniformi, si forniscono condizioni per ottenere teoremi di rappresentazione per le sue soluzioni.

Syzygies of modules and applications to propagation of regularity phenomena.

Alex Meril, Daniele C. Struppa (1990)

Publicacions Matemàtiques

Propagation of regularity is considered for solutions of rectangular systems of infinite order partial differential equations (resp. convolution equations) in spaces of hyperfunctions (resp. C∞ functions and distributions). Known resulys of this kind are recovered as particular cases, when finite order partial differential equations are considered.

Currently displaying 101 – 106 of 106

Previous Page 6