On some inequalities in normed algebras.
Dragomir, Sever S. (2008)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Bohdan J. Tomiuk (1979)
Manuscripta mathematica
S. Mouton (2006)
Studia Mathematica
Let x be a positive element of an ordered Banach algebra. We prove a relationship between the spectra of x and of certain positive elements y for which either xy ≤ yx or yx ≤ xy. Furthermore, we show that the spectral radius is continuous at x, considered as an element of the set of all positive elements y ≥ x such that either xy ≤ yx or yx ≤ xy. We also show that the property ϱ(x + y) ≤ ϱ(x) + ϱ(y) of the spectral radius ϱ can be obtained for positive elements y which satisfy at least one of the...
Abel, M. (2010)
Annals of Functional Analysis (AFA) [electronic only]
Anastasios Mallios (1974)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Yiannis Tsertos (1986)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Dina Štěrbová (1983)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Jorma Arhippainen (1992)
Studia Mathematica
Let X be a completely regular topological space and A a commutative locally m-convex algebra. We give a description of all closed and in particular closed maximal ideals of the algebra C(X,A) (= all continuous A-valued functions defined on X). The topology on C(X,A) is defined by a certain family of seminorms. The compact-open topology of C(X,A) is a special case of this topology.
Andrzej Sołtysiak (1993)
Studia Mathematica
Some inequalities are proved between the geometric joint spectral radius (cf. [3]) and the joint spectral radius as defined in [7] of finite commuting families of Banach algebra elements.
Vladimír Müller (1997)
Annales Polonici Mathematici
We prove the -spectral radius formula for n-tuples of commuting Banach algebra elements
Vladimír Müller, Andrzej Sołtysiak (1988)
Commentationes Mathematicae Universitatis Carolinae
Che-Kao Fong, Andrzej Sołtysiak (1990)
Studia Mathematica
Tsertos, Yannis (1997)
Portugaliae Mathematica
Robin Harte (1991)
Mathematische Zeitschrift
Dina Štěrbová (1986)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Stavros Giotopoulos (2004)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Susanne Dierolf, Khin Aye Aye (1998)
Extracta Mathematicae
Dina Štěrbová (1977)
Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
Rudi M. Brits, Lenore Lindeboom, Heinrich Raubenheimer (2003)
Extracta Mathematicae
Paul-Jean Cahen, Jean-Luc Chabert (2002)
Journal de théorie des nombres de Bordeaux
We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If is a subset of a rank-one valuation domain , we show that the ring of polynomial functions is dense in the ring of continuous functions from to if and only if the topological closure of in the completion of is compact. We then show how to expand continuous functions in sums of polynomials.