An algebraic characterization of quasi-Möbius homeomorphisms. (Une caractérisation algébrique des homéomorphismes quasi-Möbius.)
In this paper, we shall study contractive and pointwise contractive Banach function algebras, in which each maximal modular ideal has a contractive or pointwise contractive approximate identity, respectively, and we shall seek to characterize these algebras. We shall give many examples, including uniform algebras, that distinguish between contractive and pointwise contractive Banach function algebras. We shall describe a contractive Banach function algebra which is not equivalent to a uniform algebra....
We shall show several approximation theorems for the Hausdorff compactifications of metrizable spaces or locally compact Hausdorff spaces. It is shown that every compactification of the Euclidean n-space ℝⁿ is the supremum of some compactifications homeomorphic to a subspace of . Moreover, the following are equivalent for any connected locally compact Hausdorff space X: (i) X has no two-point compactifications, (ii) every compactification of X is the supremum of some compactifications whose remainder...