Automatic continuity in algebras of differentiable functions.
Semisimple commutative Banach algebras 𝓐 admitting exactly one uniform norm (not necessarily complete) are investigated. 𝓐 has this Unique Uniform Norm Property iff the completion U(𝓐) of 𝓐 in the spectral radius r(·) has UUNP and, for any non-zero spectral synthesis ideal ℐ of U(𝓐), ℐ ∩ 𝓐 is non-zero. 𝓐 is regular iff U(𝓐) is regular and, for any spectral synthesis ideal ℐ of 𝓐, 𝓐/ℐ has UUNP iff U(𝓐) is regular and for any spectral synthesis ideal ℐ of U(𝓐), ℐ = k(h(𝓐 ∩ ℐ)) (hulls...
We use the work of J. Bourgain to show that some uniform algebras of analytic functions have certain Banach space properties. If X is a Banach space, we say X is strongif X and X* have the Dunford-Pettis property, X has the Pełczyński property, and X* is weakly sequentially complete. Bourgain has shown that the ball-algebras and the polydisk-algebras are strong Banach spaces. Using Bourgain’s methods, Cima and Timoney have shown that if K is a compact planar set and A is R(K) or A(K), then A and...
For a locally compact group G and p ∈ (1,∞), we define and study the Beurling-Figà-Talamanca-Herz algebras . For p = 2 and abelian G, these are precisely the Beurling algebras on the dual group Ĝ. For p = 2 and compact G, our approach subsumes an earlier one by H. H. Lee and E. Samei. The key to our approach is not to define Beurling algebras through weights, i.e., possibly unbounded continuous functions, but rather through their inverses, which are bounded continuous functions. We prove that...
It has been shown that any Banach algebra satisfying ‖f 2‖ = ‖f‖2 has a representation as an algebra of quaternion-valued continuous functions. Whereas some of the classical theory of algebras of continuous complex-valued functions extends immediately to algebras of quaternion-valued functions, similar work has not been done to analyze how the theory of algebras of complex-valued Lipschitz functions extends to algebras of quaternion-valued Lipschitz functions. Denote by Lip(X, ) the algebra over...
Let G be a locally compact group and let π be a unitary representation. We study amenability and H-amenability of π in terms of the weak closure of (π ⊗ π)(G) and factorization properties of associated coefficient subspaces (or subalgebras) in B(G). By applying these results, we obtain some new characterizations of amenable groups.
This paper characterizes the Banach algebras of continuous functions on which the spectral factorization mapping 𝔖 is continuous or bounded. It is shown that 𝔖 is continuous if and only if the Riesz projection is bounded on the algebra, and that 𝔖 is bounded only if the algebra is isomorphic to the algebra of continuous functions. Consequently, 𝔖 can never be both continuous and bounded, on any algebra under consideration.
Let X be a completely regular Hausdorff space, a cover of X, and the algebra of all -valued continuous functions on X which are bounded on every . A description of quotient algebras of is given with respect to the topologies of uniform and strict convergence on the elements of .