Displaying 141 – 160 of 313

Showing per page

Isomorphisms of AC(σ) spaces

Ian Doust, Michael Leinert (2015)

Studia Mathematica

Analogues of the classical Banach-Stone theorem for spaces of continuous functions are studied in the context of the spaces of absolutely continuous functions introduced by Ashton and Doust. We show that if AC(σ₁) is algebra isomorphic to AC(σ₂) then σ₁ is homeomorphic to σ₂. The converse however is false. In a positive direction we show that the converse implication does hold if the sets σ₁ and σ₂ are confined to a restricted collection of compact sets, such as the set of all simple polygons.

Linearity in non-linear problems.

Richard Aron, Domingo García, Manuel Maestre (2001)

RACSAM

Estudiamos algunas situaciones donde encontramos un problema que, a primera vista, parece no tener solución. Pero, de hecho, existe un subespacio vectorial grande de soluciones del mismo.

Maps between Banach function algebras satisfying certain norm conditions

Maliheh Hosseini, Fereshteh Sady (2013)

Open Mathematics

Let A and B be Banach function algebras on compact Hausdorff spaces X and Y, respectively, and let A ¯ and B ¯ be their uniform closures. Let I, I′ be arbitrary non-empty sets, α ∈ ℂ{0, ρ: I → A, τ: l′ → a and S: I → B T: l′ → B be maps such that ρ(I, τ(I′) and S(I), T(I′) are closed under multiplications and contain exp A and expB, respectively. We show that if ‖S(p)T(p′)−α‖Y=‖ρ(p)τ(p′) − α‖x for all p ∈ I and p′ ∈ I′, then there exist a real algebra isomorphism S: A → B, a clopen subset K of M B and...

Multiplication of convex sets in C(K) spaces

José Pedro Moreno, Rolf Schneider (2016)

Studia Mathematica

Let C(K) denote the Banach algebra of continuous real functions, with the supremum norm, on a compact Hausdorff space K. For two subsets of C(K), one can define their product by pointwise multiplication, just as the Minkowski sum of the sets is defined by pointwise addition. Our main interest is in correlations between properties of the product of closed order intervals in C(K) and properties of the underlying space K. When K is finite, the product of two intervals in C(K) is always an interval....

Multiplicatively and non-symmetric multiplicatively norm-preserving maps

Maliheh Hosseini, Fereshteh Sady (2010)

Open Mathematics

Let A and B be Banach function algebras on compact Hausdorff spaces X and Y and let ‖.‖X and ‖.‖Y denote the supremum norms on X and Y, respectively. We first establish a result concerning a surjective map T between particular subsets of the uniform closures of A and B, preserving multiplicatively the norm, i.e. ‖Tf Tg‖Y = ‖fg‖X, for certain elements f and g in the domain. Then we show that if α ∈ ℂ 0 and T: A → B is a surjective, not necessarily linear, map satisfying ‖fg + α‖X = ‖Tf Tg + α‖Y,...

Multipliers with closed range on commutative semisimple Banach algebras

A. Ülger (2002)

Studia Mathematica

Let A be a commutative semisimple Banach algebra, Δ(A) its Gelfand spectrum, T a multiplier on A and T̂ its Gelfand transform. We study the following problems. (a) When is δ(T) = inf{|T̂(f)|: f ∈ Δ(A), T̂(f) ≠ 0} > 0? (b) When is the range T(A) of T closed in A and does it have a bounded approximate identity? (c) How to characterize the idempotent multipliers in terms of subsets of Δ(A)?

Multiplying balls in the space of continuous functions on [0,1]

Marek Balcerzak, Artur Wachowicz, Władysław Wilczyński (2005)

Studia Mathematica

Let C denote the Banach space of real-valued continuous functions on [0,1]. Let Φ: C × C → C. If Φ ∈ +, min, max then Φ is an open mapping but the multiplication Φ = · is not open. For an open ball B(f,r) in C let B²(f,r) = B(f,r)·B(f,r). Then f² ∈ Int B²(f,r) for all r > 0 if and only if either f ≥ 0 on [0,1] or f ≤ 0 on [0,1]. Another result states that Int(B₁·B₂) ≠ ∅ for any two balls B₁ and B₂ in C. We also prove that if Φ ∈ +,·,min,max, then the set Φ - 1 ( E ) is residual whenever E is residual in...

Non-regularity for Banach function algebras

J. Feinstein, D. Somerset (2000)

Studia Mathematica

Let A be a unital Banach function algebra with character space Φ A . For x Φ A , let M x and J x be the ideals of functions vanishing at x and in a neighbourhood of x, respectively. It is shown that the hull of J x is connected, and that if x does not belong to the Shilov boundary of A then the set y Φ A : M x J y has an infinite connected subset. Various related results are given.

Norm conditions for real-algebra isomorphisms between uniform algebras

Rumi Shindo (2010)

Open Mathematics

Let A and B be uniform algebras. Suppose that α ≠ 0 and A 1 ⊂ A. Let ρ, τ: A 1 → A and S, T: A 1 → B be mappings. Suppose that ρ(A 1), τ(A 1) and S(A 1), T(A 1) are closed under multiplications and contain expA and expB, respectively. If ‖S(f)T(g) − α‖∞ = ‖ρ(f)τ(g) − α‖∞ for all f, g ∈ A 1, S(e 1)−1 ∈ S(A 1) and S(e 1) ∈ T(A 1) for some e 1 ∈ A 1 with ρ(e 1) = 1, then there exists a real-algebra isomorphism S ˜ : A → B such that S ˜ (ρ(f)) = S(e 1)−1 S(f) for every f ∈ A 1. We also give some applications...

Norm conditions for uniform algebra isomorphisms

Aaron Luttman, Scott Lambert (2008)

Open Mathematics

In recent years much work has been done analyzing maps, not assumed to be linear, between uniform algebras that preserve the norm, spectrum, or subsets of the spectra of algebra elements, and it is shown that such maps must be linear and/or multiplicative. Letting A and B be uniform algebras on compact Hausdorff spaces X and Y, respectively, it is shown here that if λ ∈ ℂ / 0 and T: A → B is a surjective map, not assumed to be linear, satisfying T ( f ) T ( g ) + λ = f g + λ f , g A , then T is an ℝ-linear isometry and there exist an...

Currently displaying 141 – 160 of 313