Displaying 101 – 120 of 199

Showing per page

On ideals consisting of topological zero divisors

Antoni Wawrzyńczyk (2000)

Studia Mathematica

The class ω(A) of ideals consisting of topological zero divisors of a commutative Banach algebra A is studied. We prove that the maximal ideals of the class ω(A) are of codimension one.

On the ideal structure of algebras of LMC-algebra valued functions

Jorma Arhippainen (1992)

Studia Mathematica

Let X be a completely regular topological space and A a commutative locally m-convex algebra. We give a description of all closed and in particular closed maximal ideals of the algebra C(X,A) (= all continuous A-valued functions defined on X). The topology on C(X,A) is defined by a certain family of seminorms. The compact-open topology of C(X,A) is a special case of this topology.

On z◦ -ideals in C(X)

F. Azarpanah, O. Karamzadeh, A. Rezai Aliabad (1999)

Fundamenta Mathematicae

An ideal I in a commutative ring R is called a z°-ideal if I consists of zero divisors and for each a ∈ I the intersection of all minimal prime ideals containing a is contained in I. We characterize topological spaces X for which z-ideals and z°-ideals coincide in , or equivalently, the sum of any two ideals consisting entirely of zero divisors consists entirely of zero divisors. Basically disconnected spaces, extremally disconnected and P-spaces are characterized in terms of z°-ideals. Finally,...

Pointwise multiplication operators on weighted Banach spaces of analytic functions

J. Bonet, P. Domański, M. Lindström (1999)

Studia Mathematica

For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator M φ , M φ ( f ) = φ f , on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when M φ ' is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map M φ ' .

Currently displaying 101 – 120 of 199