Displaying 141 – 160 of 199

Showing per page

Spectrum of certain Banach algebras and ∂̅-problems

Linus Carlsson, Urban Cegrell, Anders Fällström (2007)

Annales Polonici Mathematici

We study the spectrum of certain Banach algebras of holomorphic functions defined on a domain Ω where ∂̅-problems with certain estimates can be solved. We show that the projection of the spectrum onto ℂⁿ equals Ω̅ and that the fibers over Ω are trivial. This is used to solve a corona problem in the special case where all but one generator are continuous up to the boundary.

Spectrum of commutative Banach algebras and isomorphism of C*-algebras related to locally compact groups

Zhiguo Hu (1998)

Studia Mathematica

Let A be a semisimple commutative regular tauberian Banach algebra with spectrum Σ A . In this paper, we study the norm spectra of elements of s p a n ¯ Σ A and present some applications. In particular, we characterize the discreteness of Σ A in terms of norm spectra. The algebra A is said to have property (S) if, for all φ ¯ Σ A 0 , φ has a nonempty norm spectrum. For a locally compact group G, let 2 d ( Ĝ ) denote the C*-algebra generated by left translation operators on L 2 ( G ) and G d denote the discrete group G. We prove that the Fourier...

Standard ideals in convolution Sobolev algebras on the half-line

José E. Galé, Antoni Wawrzyńczyk (2011)

Colloquium Mathematicae

We study the relation between standard ideals of the convolution Sobolev algebra ( n ) ( t ) and the convolution Beurling algebra L¹((1+t)ⁿ) on the half-line (0,∞). In particular it is proved that all closed ideals in ( n ) ( t ) with compact and countable hull are standard.

The kh-socle of a commutative semisimple Banach algebra

Youness Hadder (2020)

Mathematica Bohemica

Let 𝒜 be a commutative complex semisimple Banach algebra. Denote by kh ( soc ( 𝒜 ) ) the kernel of the hull of the socle of 𝒜 . In this work we give some new characterizations of this ideal in terms of minimal idempotents in 𝒜 . This allows us to show that a “result” from Riesz theory in commutative Banach algebras is not true.

The norm spectrum in certain classes of commutative Banach algebras

H. S. Mustafayev (2011)

Colloquium Mathematicae

Let A be a commutative Banach algebra and let Σ A be its structure space. The norm spectrum σ(f) of the functional f ∈ A* is defined by σ ( f ) = f · a : a A ¯ Σ A , where f·a is the functional on A defined by ⟨f·a,b⟩ = ⟨f,ab⟩, b ∈ A. We investigate basic properties of the norm spectrum in certain classes of commutative Banach algebras and present some applications.

The Słodkowski spectra and higher Shilov boundaries

Vladimír Müller (1993)

Studia Mathematica

We investigate relations between the spectra defined by Słodkowski [14] and higher Shilov boundaries of the Taylor spectrum. The results generalize the well-known relation between the approximate point spectrum and the usual Shilov boundary.

Currently displaying 141 – 160 of 199