Isomorphismes entre espaces
Analogues of the classical Banach-Stone theorem for spaces of continuous functions are studied in the context of the spaces of absolutely continuous functions introduced by Ashton and Doust. We show that if AC(σ₁) is algebra isomorphic to AC(σ₂) then σ₁ is homeomorphic to σ₂. The converse however is false. In a positive direction we show that the converse implication does hold if the sets σ₁ and σ₂ are confined to a restricted collection of compact sets, such as the set of all simple polygons.
Let be a measure on a domain in such that the Bergman space of holomorphic functions in possesses a reproducing kernel and . The Berezin transform associated to is the integral...
We study those Köthe coechelon sequence spaces , 1 ≤ p ≤ ∞ or p = 0, which are locally convex (Riesz) algebras for pointwise multiplication. We characterize in terms of the matrix V = (vₙ)ₙ when an algebra is unital, locally m-convex, a -algebra, has a continuous (quasi)-inverse, all entire functions act on it or some transcendental entire functions act on it. It is proved that all multiplicative functionals are continuous and a precise description of all regular and all degenerate maximal ideals...
Nous répondons à une conjecture de R. Coifman et R. Rochberg : dans le complexifié du cône sphérique de , le dual de la classe de Bergman s’obtient comme projection de Bergman de et coïncide avec la classe de Bloch des fonctions holomorphes. Nous examinons également le cas d’un produit de domaines.
In this note by using techniques similar to that of [2] and [3], we study the local polynomial convexity of perturbation of union of two totally real planes meeting along a real line.