Spectral Theory for A (X).
Soit la -algèbre, ou bien réduite ou bien maximale, associée à la variété feuilletée , et la -algèbre élémentaire des opérateurs compacts. Alors, si dim, on montre que est isomorphe à .
We show that two continuous inverse limit actions α and β of a locally compact group G on two pro-C *-algebras A and B are stably outer conjugate if and only if there is a full Hilbert A-module E and a continuous action u of G on E such that E and E *(the dual module of E) are countably generated in M(E)(the multiplier module of E), respectively M(E *) and the pair (E, u) implements a strong Morita equivalence between α and β. This is a generalization of a result of F. Combes [Proc. London Math....
We identify how the standard commuting dilation of the maximal commuting piece of any row contraction, especially on a finite-dimensional Hilbert space, is associated to the minimal isometric dilation of the row contraction. Using the concept of standard commuting dilation it is also shown that if liftings of row contractions are on finite-dimensional Hilbert spaces, then there are strong restrictions on properties of the liftings.
Let A be a type II von Neumann algebra with predual A⁎. We prove that A⁎ does not have the alternative Dunford-Pettis property introduced by W. Freedman [7], i.e., there is a sequence (φₙ) converging weakly to φ in A⁎ with ||φₙ|| = ||φ|| = 1 for all n ∈ ℕ and a weakly null sequence (xₙ) in A such that φₙ(xₙ) ↛ 0. This answers a question posed in [7].
Un -modulo hilbertiano destro su una -algebra dotato di uno -omomorfismo isometrico viene qui considerato come un oggetto della -categoria degli -moduli Hilbertiani destri. Come in [11], associamo ad esso una -algebra contenente come un «-bimodulo hilbertiano in ». Se è pieno e proiettivo finito è la -algebra , la generalizzazione delle algebre di Cuntz-Krieger introdotta da Pimsner [27] (e in un caso particolare da Katayama [31]). Più in generale, è canonicamente immersa...