Positive cones associated with a von Neumann algebra.
We present recent results on positive energy representations of quantum spin models.
A characterization of the structure of positive maps is presented. This sheds some more light on the old open problem studied both in Quantum Information and Operator Algebras. Our arguments are based on the concept of exposed points, links between tensor products and mapping spaces and convex analysis.
For C*-algebras A and B and a Hilbert space H, a class of bilinear maps Φ: A× B → L(H), analogous to completely positive linear maps, is studied. A Stinespring type representation theorem is proved, and in case A and B are commutative, the class is shown to coincide with that of positive bilinear maps. As an application, the extendibility of a positive operator bimeasure to a positive operator measure is shown to be equivalent to various conditions involving positive scalar bimeasures, pairs of...
We describe the class of probability measures whose moments are given in terms of the Aval numbers. They are expressed as the multiplicative free convolution of measures corresponding to the ballot numbers .
This is a collection of open problems in the theory of quantum groups. Emphasis is given to problems in the analytic aspects of the subject.
In [AnsMonic, AnsBoolean], we investigated monic multivariate non-commutative orthogonal polynomials, their recursions, states of orthogonality, and corresponding continued fraction expansions. In this note, we collect a number of examples, demonstrating what these general results look like for the most important states on non-commutative polynomials, namely for various product states. In particular, we introduce a notion of a product-type state on polynomials, which covers all the non-commutative...