Displaying 901 – 920 of 1491

Showing per page

On the generalized Drazin inverse and generalized resolvent

Dragan S. Djordjević, Stanimirović, Predrag S. (2001)

Czechoslovak Mathematical Journal

We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in C * -algebras is considered. We investigate the generalized Drazin inverse as an outer inverse with prescribed range and kernel....

On the index of nonlocal elliptic operators for compact Lie groups

Anton Savin (2011)

Open Mathematics

We consider a class of nonlocal operators associated with a compact Lie group G acting on a smooth manifold. A notion of symbol of such operators is introduced and an index formula for elliptic elements is obtained. The symbol in this situation is an element of a noncommutative algebra (crossed product by G) and to obtain an index formula, we define the Chern character for this algebra in the framework of noncommutative geometry.

On the K-theory of the C * -algebra generated by the left regular representation of an Ore semigroup

Joachim Cuntz, Siegfried Echterhoff, Xin Li (2015)

Journal of the European Mathematical Society

We compute the K -theory of C * -algebras generated by the left regular representation of left Ore semigroups satisfying certain regularity conditions. Our result describes the K -theory of these semigroup C * -algebras in terms of the K -theory for the reduced group C * -algebras of certain groups which are typically easier to handle. Then we apply our result to specific semigroups from algebraic number theory.

On the Lebesgue decomposition of the normal states of a JBW-algebra

Jacques Dubois, Brahim Hadjou (1992)

Mathematica Bohemica

In this article, a theorem is proved asserting that any linear functional defined on a JBW-algebra admits a Lebesque decomposition with respect to any normal state defined on the algebra. Then we show that the positivity (and the unicity) of this decomposition is insured for the trace states defined on the algebra. In fact, this property can be used to give a new characterization of the trace states amoungst all the normal states.

On the Lukacs property for free random variables

Kamil Szpojankowski (2015)

Studia Mathematica

The Lukacs property of the free Poisson distribution is studied. We prove that if free and are free Poisson distributed with suitable parameters, then + and ( + ) - 1 / 2 ( + ) - 1 / 2 are free. As an auxiliary result we compute the joint cumulants of and - 1 for free Poisson distributed . We also study the Lukacs property of the free Gamma distribution.

Currently displaying 901 – 920 of 1491