Schatten norms of Toeplitz matrices with Fisher--Hartwig singularities.
We discuss the problem of characterizing the possible asymptotic behaviour of the norm of the iterates of a bounded linear operator between two Banach spaces. In particular, given an increasing sequence of positive numbers tending to infinity, we construct Banach spaces such that the norm of the iterates of a suitable multiplication operator between these spaces assumes (or exceeds) the values of this sequence.
We prove that certain maximal ideals in Beurling algebras on the unit disc have approximate identities, and show the existence of functions with certain properties in these maximal ideals. We then use these results to prove that if T is a bounded operator on a Banach space X satisfying as n → ∞ for some β ≥ 0, then diverges for every x ∈ X such that .
Let A, B be positive operators on a Hilbert space with 0 < m ≤ A, B ≤ M. Then for every unital positive linear map Φ, Φ²((A + B)/2) ≤ K²(h)Φ²(A ♯ B), and Φ²((A+B)/2) ≤ K²(h)(Φ(A) ♯ Φ(B))², where A ♯ B is the geometric mean and K(h) = (h+1)²/(4h) with h = M/m.