The complex Grothendieck inequality for 2x2 matrices
Our aim is to prove that for any fixed 1/2 < α < 1 there exists a Hilbert space contraction T such that σ(T) = 1 and . This answers Zemánek’s question on the time regularity property.
Dans cet article on étudie en premier lieu la résolvante (le noyau de Green) d’un opérateur agissant sur un arbre localement fini. Ce noyau est supposé invariant par un groupe d’automorphismes de l’arbre. On donne l’expression générique de cette résolvante et on établit des simplifications sous différentes hypothèses sur .En second lieu on introduit la transformation de Poisson qui associe à une mesure additive finie sur l’espace des bouts de l’arbre une fonction propre de l’ opérateur. On...
We develop methods for studying transition operators on metric spaces that are invariant under a co-compact group which acts properly. A basic requirement is a decomposition of such operators with respect to the group orbits. We then introduce reduced transition operators on the compact factor space whose norms and spectral radii are upper bounds for the Lp-norms and spectral radii of the original operator. If the group is amenable then the spectral radii of the original and reduced operators coincide,...
Let V be a two-dimensional real symmetric space with unit ball having 8n extreme points. Let λ(V) denote the absolute projection constant of V. We show that where is the space whose ball is a regular 8n-polygon. Also we reprove a result of [1] and [5] which states that for any two-dimensional real symmetric space V.