Loading [MathJax]/extensions/MathZoom.js
We characterize tauberian operators in terms of the images of disjoint sequences and in terms of the image of the dyadic tree in . As applications, we show that the class of tauberian operators is stable under small norm perturbations and that its perturbation class coincides with the class of all weakly precompact operators. Moreover, we prove that the second conjugate of a tauberian operator is also tauberian, and the induced operator is an isomorphism into. Also, we show that embeds...
Let X be a Banach space and be absolutely regular (i.e. integrable when divided by some polynomial). If the distributional Fourier transform of f is locally integrable then f converges to 0 at infinity in some sense to be made precise. From this result we deduce some Tauberian theorems for Fourier and Laplace transforms, which can be improved if the underlying Banach space has the analytic Radon-Nikodym property.
We study the relations between simetrization by a limiting process of probabilities and functions defined on a metric compacy product space and their ergodic properties.
The spectral problem (s²I - ϕ(V)*ϕ(V))f = 0 for an arbitrary complex polynomial ϕ of the classical Volterra operator V in L₂(0,1) is considered. An equivalent boundary value problem for a differential equation of order 2n, n = deg(ϕ), is constructed. In the case ϕ(z) = 1 + az the singular numbers are explicitly described in terms of roots of a transcendental equation, their localization and asymptotic behavior is investigated, and an explicit formula for the ||I + aV||₂ is given. For all a ≠ 0 this...
Let T be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform . We prove that weak and strong convergence are equivalent, and in a reflexive space also is equivalent to the convergence. We also show that (which converges on (I-T)X) is precisely the infinitesimal generator of the semigroup .
Si considera, in uno spazio di Hilbert l'operatore lineare , dove è un operatore negative autoaggiunto e è un potenziale che soddisfa a opportune condizioni di integrabilità. Si dimostra con un metodo analitico che è essenzialmente autoaggiunto in uno spazio e si caratterizza il dominio della sua chiusura come sottospazio di . Si studia inoltre la «spectral gap property» del semigruppo generato da .
Let ϕ(z) be an analytic function in a disk |z| < ρ (in particular, a polynomial) such that ϕ(0) = 1, ϕ(z)≢ 1. Let V be the operator of integration in , 1 ≤ p ≤ ∞. Then ϕ(V) is power bounded if and only if ϕ’(0) < 0 and p = 2. In this case some explicit upper bounds are given for the norms of ϕ(V)ⁿ and subsequent differences between the powers. It is shown that ϕ(V) never satisfies the Ritt condition but the Kreiss condition is satisfied if and only if ϕ’(0) < 0, at least in the polynomial...
It is shown that an operator with the properties mentioned in the title does exist in the space , 1 ≤ p ≤ ∞. The maximal sector for the extended resolvent condition can be prescribed a priori jointly with the corresponding order of the exponential growth of the resolvent in the complementary sector.
Currently displaying 1 –
20 of
22