Spectral theory and operator ergodic theory on super-reflexive Banach spaces
On reflexive spaces trigonometrically well-bounded operators have an operator-ergodic-theory characterization as the invertible operators U such that . (*) Trigonometrically well-bounded operators permeate many settings of modern analysis, and this note highlights the advances in both their spectral theory and operator ergodic theory made possible by a recent rekindling of interest in the R. C. James inequalities for super-reflexive spaces. When the James inequalities are combined with Young-Stieltjes...