Perturbations by Quadratic Forms and Invariance of Essential Spectra.
The notion of bi-continuous semigroups has recently been introduced to handle semigroups on Banach spaces that are only strongly continuous for a topology coarser than the norm-topology. In this paper, as a continuation of the systematic treatment of such semigroups started in [20-22], we provide a bounded perturbation theorem, which turns out to be quite general in view of various examples.
Let T and V be two Hilbert space contractions and let X be a linear bounded operator. It was proved by C. Foiaş and J. P. Williams that in certain cases the operator block matrix R(X;T,V) (equation (1.1) below) is similar to a contraction if and only if the commutator equation X = TZ-ZV has a bounded solution Z. We characterize here the similarity to contractions of some operator matrices R(X;T,V) in terms of growth conditions or of perturbations of R(0;T,V) = T ⊕ V.
Suppose A is a sectorial operator on a Banach space X, which admits an H∞-calculus. We study conditions on a multiplicative perturbation B of A which ensure that B also has an H∞-calculus. We identify a class of bounded operators T : X→X, which we call strongly triangular, such that if B = (1 + T) A is sectorial then it also has an H∞-calculus. In the case X is a Hilbert space an operator is strongly triangular if and only if ∑ Sn(T)/n <∞ where (Sn(T))n=1∞ are the singular values of T.
A bounded linear operator T acting on a Hilbert space is said to be polaroid if each isolated point in the spectrum is a pole of the resolvent of T. There are several generalizations of the polaroid property. We investigate compact perturbations of polaroid type operators. We prove that, given an operator T and ε > 0, there exists a compact operator K with ||K|| < ε such that T + K is polaroid. Moreover, we characterize those operators for which a certain polaroid type property is stable under...