The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An operator in a Banach space is called upper (resp. lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operator in a Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder. We prove the stability of the semi-Browder operators under commuting Riesz operator perturbations. As a corollary we get some results of Grabiner [6], Kaashoek and Lay [8], Lay [11], Rakočević [15] and Schechter [16].
In this note, I wish to describe the first order semiclassical approximation to the
spectrum of one frequency quasi-periodic operators. In the case of a sampling function
with two critical points, the spectrum exhibits two gaps in the leading order
approximation. Furthermore, I will give an example of a two frequency quasi-periodic
operator, which has no gaps in the leading order of the semiclassical approximation.
Let be an operator acting on a Banach space , let and be respectively the spectrum and the B-Weyl spectrum of . We say that satisfies the generalized Weyl’s theorem if , where is the set of all isolated eigenvalues of . The first goal of this paper is to show that if is an operator of topological uniform descent and is an accumulation point of the point spectrum of then does not have the single valued extension property at , extending an earlier result of J. K. Finch and a...
We prove that the absolutely continuous part of the periodic Jacobi operator does not change (modulo unitary equivalence) under additive perturbations by compact Jacobi operators with weights and diagonals defined in terms of the Stolz classes of slowly oscillating sequences. This result substantially generalizes many previous results, e.g., the one which can be obtained directly by the abstract trace class perturbation theorem of Kato-Rosenblum. It also generalizes several results concerning perturbations...
Burgos, Kaidi, Mbekhta and Oudghiri [J. Operator Theory 56 (2006)] provided an affirmative answer to a question of Kaashoek and Lay and proved that an operator F is of power finite rank if and only if for every operator T commuting with F. Later, several authors extended this result to the essential descent spectrum, left Drazin spectrum and left essential Drazin spectrum. In this paper, using the theory of operators with eventual topological uniform descent and the technique used by Burgos et...
Currently displaying 1 –
20 of
32