Page 1 Next

Displaying 1 – 20 of 43

Showing per page

(Ultra)differentiable functional calculus and current extension of the resolvent mapping

Mats Andersson (2003)

Annales de l’institut Fourier

Let a = ( a 1 , ... , a n ) be a tuple of commuting operators on a Banach space X . We discuss various conditions equivalent to that the holomorphic (Taylor) functional calculus has an extension to the real-analytic functions or various ultradifferentiable classes. In particular, we discuss the possible existence of a functional calculus for smooth functions. We relate the existence of a possible extension to existence of a certain (ultra)current extension of the resolvent mapping over the (Taylor) spectrum of a . If a ...

[unknown]

E. Albrecht, W. Ricker (1998)

Studia Mathematica

The aim is to investigate certain spectral properties, such as decomposability, the spectral mapping property and the Lyubich-Matsaev property, for linear differential operators with constant coefficients ( and more general Fourier multiplier operators) acting in L p ( N ) . The criteria developed for such operators are quite general and p-dependent, i.e. they hold for a range of p in an interval about 2 (which is typically not (1,∞)). The main idea is to construct appropriate functional calculi: this is...

Currently displaying 1 – 20 of 43

Page 1 Next