A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces.
The purpose of this work is to give a topological condition for the usual product of two closed operators acting in a Hilbert space to be closed.
We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue-Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii)...
We show that some unital complex commutative LF-algebra of -tempered functions on (M. Hemdaoui, 2017) equipped with its natural convex vector bornology is useful for functional calculus.
The Fourier expansion in eigenfunctions of a positive operator is studied with the help of abstract functions of this operator. The rate of convergence is estimated in terms of its eigenvalues, especially for uniform and absolute convergence. Some particular results are obtained for elliptic operators and hyperbolic equations.