Displaying 341 – 360 of 502

Showing per page

On the multiplication operators on spaces of analytic functions

B. Yousefi, S. Foroutan (2005)

Studia Mathematica

We consider Hilbert spaces of analytic functions on a plane domain Ω and multiplication operators on such spaces induced by functions from H ( Ω ) . Recently, K. Zhu has given conditions under which the adjoints of multiplication operators on Hilbert spaces of analytic functions belong to the Cowen-Douglas classes. In this paper, we provide some sufficient conditions which give the converse of the main result obtained by K. Zhu. We also characterize the commutant of certain multiplication operators.

On the multiplicity function of ergodic group extensions, II

Jakub Kwiatkowski, Mariusz Lemańczyk (1995)

Studia Mathematica

For an arbitrary set A + containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.

On the norm-closure of the class of hypercyclic operators

Christoph Schmoeger (1997)

Annales Polonici Mathematici

Let T be a bounded linear operator acting on a complex, separable, infinite-dimensional Hilbert space and let f: D → ℂ be an analytic function defined on an open set D ⊆ ℂ which contains the spectrum of T. If T is the limit of hypercyclic operators and if f is nonconstant on every connected component of D, then f(T) is the limit of hypercyclic operators if and only if f ( σ W ( T ) ) z : | z | = 1 is connected, where σ W ( T ) denotes the Weyl spectrum of T.

On the numerical range of operators on locally and on H-locally convex spaces

Edvard Kramar (1993)

Commentationes Mathematicae Universitatis Carolinae

The spatial numerical range for a class of operators on locally convex space was studied by Giles, Joseph, Koehler and Sims in [3]. The purpose of this paper is to consider some additional properties of the numerical range on locally convex and especially on H -locally convex spaces.

On the orbit of the centralizer of a matrix

Ching-I Hsin (2002)

Colloquium Mathematicae

Let A be a complex n × n matrix. Let A' be its commutant in Mₙ(ℂ), and C(A) be its centralizer in GL(n,ℂ). Consider the standard C(A)-action on ℂⁿ. We describe the C(A)-orbits via invariant subspaces of A'. For example, we count the number of C(A)-orbits as well as that of invariant subspaces of A'.

On the perturbation functions and similarity orbits

Haïkel Skhiri (2008)

Studia Mathematica

We show that the essential spectral radius ϱ e ( T ) of T ∈ B(H) can be calculated by the formula ϱ e ( T ) = inf · ( X T X - 1 ) : X an invertible operator, where · ( T ) is a Φ₁-perturbation function introduced by Mbekhta [J. Operator Theory 51 (2004)]. Also, we show that if · ( T ) is a Φ₂-perturbation function [loc. cit.] and if T is a Fredholm operator, then d i s t ( 0 , σ e ( T ) ) = sup · ( X T X - 1 ) : X an invertible operator.

On the power boundedness of certain Volterra operator pencils

Dashdondog Tsedenbayar (2003)

Studia Mathematica

Let V be the classical Volterra operator on L²(0,1), and let z be a complex number. We prove that I-zV is power bounded if and only if Re z ≥ 0 and Im z = 0, while I-zV² is power bounded if and only if z = 0. The first result yields | | ( I - V ) - ( I - V ) n + 1 | | = O ( n - 1 / 2 ) as n → ∞, an improvement of [Py]. We also study some other related operator pencils.

Currently displaying 341 – 360 of 502