Nonhermitian systems and pseudospectra
Four applications are outlined of pseudospectra of highly nonnormal linear operators.
Four applications are outlined of pseudospectra of highly nonnormal linear operators.
We consider -tuples of commuting operators on a Banach space with real spectra. The holomorphic functional calculus for is extended to algebras of ultra-differentiable functions on , depending on the growth of , , when . In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.
We study operators whose commutant is reflexive but not hyperreflexive. We construct a C₀ contraction and a Jordan block operator associated with a Blaschke product B which have the above mentioned property. A sufficient condition for hyperreflexivity of is given. Some other results related to hyperreflexivity of spaces of operators that could be interesting in themselves are proved.
We consider nonlinear equations in linear spaces and algebras which can be solved by a "separation of variables" obtained due to Algebraic Analysis. It is shown that the structures of linear spaces and commutative algebras (even if they are Leibniz algebras) are not rich enough for our purposes. Therefore, in order to generalize the method used for separable ordinary differential equations, we have to assume that in algebras under consideration there exist logarithmic mappings. Section 1 contains...
In this work we introduce a nonparametric recursive aggregation process called Multilayer Aggregation (MLA). The name refers to the fact that at each step the results from the previous one are aggregated and thus, before the final result is derived, the initial values are subjected to several layers of aggregation. Most of the conventional aggregation operators, as for instance weighted mean, combine numerical values according to a vector of weights (parameters). Alternatively, the MLA operators...
In this note we discuss some results on numerical radius attaining operators paralleling earlier results on norm attaining operators. For arbitrary Banach spaces X and Y, the set of (bounded, linear) operators from X to Y whose adjoints attain their norms is norm-dense in the space of all operators. This theorem, due to W. Zizler, improves an earlier result by J. Lindenstrauss on the denseness of operators whose second adjoints attain their norms, and is also related to a recent result by C. Stegall...
We show that a positive semigroup on with generator A and ||R(α + i β)|| → 0 as |β| → ∞ for some α ∈ ℝ is continuous in the operator norm for t>0. The proof is based on a criterion for norm continuity in terms of “smoothing properties” of certain convolution operators on general Banach spaces and an extrapolation result for the -scale, which may be of independent interest.