Displaying 601 – 620 of 3198

Showing per page

Differentiability of perturbed semigroups and delay semigroups

Charles J. K. Batty (2007)

Banach Center Publications

Suppose that A generates a C₀-semigroup T on a Banach space X. In 1953 R. S. Phillips showed that, for each bounded operator B on X, the perturbation A+B of A generates a C₀-semigroup on X, and he considered whether certain classes of semigroups are stable under such perturbations. This study was extended in 1968 by A. Pazy who identified a condition on the resolvent of A which is sufficient for the perturbed semigroups to be immediately differentiable. However, M. Renardy showed in 1995 that immediate...

Differentiability of the g-Drazin inverse

J. J. Koliha, V. Rakočević (2005)

Studia Mathematica

If A(z) is a function of a real or complex variable with values in the space B(X) of all bounded linear operators on a Banach space X with each A(z)g-Drazin invertible, we study conditions under which the g-Drazin inverse A ( z ) is differentiable. From our results we recover a theorem due to Campbell on the differentiability of the Drazin inverse of a matrix-valued function and a result on differentiation of the Moore-Penrose inverse in Hilbert spaces.

Differentiable L p -functional calculus for certain sums of non-commuting operators

Michael Gnewuch (2006)

Colloquium Mathematicae

We consider a special class of sums of non-commuting positive operators on L²-spaces and derive a formula for their holomorphic semigroups. The formula enables us to give sufficient conditions for these operators to admit differentiable L p -functional calculus for 1 ≤ p ≤ ∞. Our results are in particular applicable to certain sub-Laplacians, Schrödinger operators and sums of even powers of vector fields on solvable Lie groups with exponential volume growth.

Dilatations des commutants d'opérateurs pour des espaces de Krein de fonctions analytiques

Daniel Alpay (1989)

Annales de l'institut Fourier

Soient 𝒦 1 et 𝒦 2 deux espaces de Krein de fonctions analytiques dans le disque unité invariants pour l’opérateur de déplacement à gauche R 0 ( R 0 f ( z ) = ( f ( z ) - f ( 0 ) ) / z ) et soit A un opérateur linéaire continu de 𝒦 1 dans 𝒦 2 dont l’adjoint commute avec R 0 . Nous étudions les dilatations B de A qui conservent cette propriété de commutation et pour lesquelles les formes hermitiennes définies par I - A A * et I - B B * ont le même nombre de carrés négatifs. Nous obtenons ainsi une version du théorème de dilatation des commutants d’opérateurs dans le cadre...

Direct sums of irreducible operators

Jun Shen Fang, Chun-Lan Jiang, Pei Yuan Wu (2003)

Studia Mathematica

It is known that every operator on a (separable) Hilbert space is the direct integral of irreducible operators, but not every one is the direct sum of irreducible ones. We show that an operator can have either finitely or uncountably many reducing subspaces, and the former holds if and only if the operator is the direct sum of finitely many irreducible operators no two of which are unitarily equivalent. We also characterize operators T which are direct sums of irreducible operators in terms of the...

Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces

Takeshi Yoshimoto (2000)

Studia Mathematica

We study the convergence properties of Dirichlet series for a bounded linear operator T in a Banach space X. For an increasing sequence μ = μ n of positive numbers and a sequence f = f n of functions analytic in neighborhoods of the spectrum σ(T), the Dirichlet series for f n ( T ) is defined by D[f,μ;z](T) = ∑n=0∞ e-μnz fn(T), z∈ ℂ. Moreover, we introduce a family of summation methods called Dirichlet methods and study the ergodic properties of Dirichlet averages for T in the uniform operator topology.

Currently displaying 601 – 620 of 3198