Previous Page 4

Displaying 61 – 66 of 66

Showing per page

Lower bound and upper bound of operators on block weighted sequence spaces

Rahmatollah Lashkaripour, Gholomraza Talebi (2012)

Czechoslovak Mathematical Journal

Let A = ( a n , k ) n , k 1 be a non-negative matrix. Denote by L v , p , q , F ( A ) the supremum of those L that satisfy the inequality A x v , q , F L x v , p , F , where x 0 and x l p ( v , F ) and also v = ( v n ) n = 1 is an increasing, non-negative sequence of real numbers. If p = q , we use L v , p , F ( A ) instead of L v , p , p , F ( A ) . In this paper we obtain a Hardy type formula for L v , p , q , F ( H μ ) , where H μ is a Hausdorff matrix and 0 < q p 1 . Another purpose of this paper is to establish a lower bound for A W N M v , p , F , where A W N M is the Nörlund matrix associated with the sequence W = { w n } n = 1 and 1 < p < . Our results generalize some works of Bennett, Jameson and present authors....

Currently displaying 61 – 66 of 66

Previous Page 4