Displaying 1321 – 1340 of 3198

Showing per page

On a property of weak resolvents and its application to a spectral problem

Yoichi Uetake (1997)

Annales Polonici Mathematici

We show that the poles of a resolvent coincide with the poles of its weak resolvent up to their orders, for operators on Hilbert space which have some cyclic properties. Using this, we show that a theorem similar to the Mlak theorem holds under milder conditions, if a given operator and its adjoint have cyclic vectors.

On a question of Mbekhta.

Christoph Schmoeger (2005)

Extracta Mathematicae

The present paper deals with a question of M. Mbekhta concerning partial isometries on Banach spaces.

On a theorem of Gelfand and its local generalizations

Driss Drissi (1997)

Studia Mathematica

In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = 1, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand’s theorem for m commuting bounded operators, T 1 , . . . , T m , on a Banach space X.

On a theorem of Vesentini

Gerd Herzog, Christoph Schmoeger (2004)

Studia Mathematica

Let 𝒜 be a Banach algebra over ℂ with unit 1 and 𝑓: ℂ → ℂ an entire function. Let 𝐟: 𝒜 → 𝒜 be defined by 𝐟(a) = 𝑓(a) (a ∈ 𝒜), where 𝑓(a) is given by the usual analytic calculus. The connections between the periods of 𝑓 and the periods of 𝐟 are settled by a theorem of E. Vesentini. We give a new proof of this theorem and investigate further properties of periods of 𝐟, for example in C*-algebras.

On a vector-valued local ergodic theorem in L

Ryotaro Sato (1999)

Studia Mathematica

Let T = T ( u ) : u d + be a strongly continuous d-dimensional semigroup of linear contractions on L 1 ( ( Ω , Σ , μ ) ; X ) , where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since L 1 ( ( Ω , Σ , μ ) ; X ) * = L ( ( Ω , Σ , μ ) ; X * ) , the adjoint semigroup T * = T * ( u ) : u d + becomes a weak*-continuous semigroup of linear contractions acting on L ( ( Ω , Σ , μ ) ; X * ) . In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), u d + , has a contraction majorant P(u) defined on L 1 ( ( Ω , Σ , μ ) ; ) , that is, P(u) is a positive linear contraction on L 1 ( ( Ω , Σ , μ ) ; ) such that T ( u ) f ( ω ) P ( u ) f ( · ) ( ω ) almost everywhere...

On a Weyl-von Neumann type theorem for antilinear self-adjoint operators

Santtu Ruotsalainen (2012)

Studia Mathematica

Antilinear operators on a complex Hilbert space arise in various contexts in mathematical physics. In this paper, an analogue of the Weyl-von Neumann theorem for antilinear self-adjoint operators is proved, i.e. that an antilinear self-adjoint operator is the sum of a diagonalizable operator and of a compact operator with arbitrarily small Schatten p-norm. On the way, we discuss conjugations and their properties. A spectral integral representation for antilinear self-adjoint operators is constructed....

Currently displaying 1321 – 1340 of 3198