Convergence of an operator series. (Short Communication).
The paper concerns an approximation of an eigenvalue problem for two forms on a Hilbert space . We investigate some approximation methods generated by sequences of forms and defined on a dense subspace of . The proof of convergence of the methods is based on the theory of the external approximation of eigenvalue problems. The general results are applied to Aronszajn’s method.
Let be an iterative process for solving the operator equation in Hilbert space . Let the sequence formed by the above described iterative process be convergent for some initial approximation with a limit . For given let us define a new sequence by the formula , where are obtained by solving a minimization problem for a given functional. In this paper convergence properties of are investigated and on the basis of the results thus obtainded it is proved that for some .
Let X be a Banach space and T ∈ L(X), the space of all bounded linear operators on X. We give a list of necessary and sufficient conditions for the uniform stability of T, that is, for the convergence of the sequence of iterates of T in the uniform topology of L(X). In particular, T is uniformly stable iff for some p ∈ ℕ, the restriction of the pth iterate of T to the range of I-T is a Banach contraction. Our proof is elementary: It uses simple facts from linear algebra, and the Banach Contraction...
Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized....
Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations...
For a sequence of mutually orthogonal projections in a Banach space, we discuss all possible limits of the sums in a “strong” sense. Those limits turn out to be some special idempotent operators (unbounded, in general). In the case of X = L₂(Ω,μ), an arbitrary unbounded closed and densely defined operator A in X may be the μ-almost sure limit of (i.e. μ-a.e. for all f ∈ (A)).
2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.We estimate the (midpoint) modulus of convexity at the unit 1 of a Banach algebra A showing that inf {max±||1 ± x|| − 1 : x ∈ A, ||x||=ε} ≥ (π/4e)ε²+o(ε²) as ε → 0. We also give a characterization of two-dimensional subspaces of Banach algebras containing the identity in terms of polynomial inequalities.
A class of convolution operators on spaces of holomorphic functions related to the Hadamard multiplication theorem for power series and generalizing infinite order Euler differential operators is introduced and investigated. Emphasis is placed on questions concerning injectivity, denseness of range and surjectivity of the operators.