Lower bounds for eigenvalues of Schatten-von Neumann operators.
Using [1], which is a local generalization of Gelfand's result for powerbounded operators, we first give a quantitative local extension of Lumer-Philips' result that states conditions under which a quasi-nilpotent dissipative operator vanishes. Secondly, we also improve Lumer-Phillips' theorem on strongly continuous semigroups of contraction operators.
We prove that for normal operators the generalized commutator approaches zero when tends to zero in the norm of the Schatten-von Neumann class with and varies in a bounded set of such a class.
In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = 1, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand’s theorem for m commuting bounded operators, , on a Banach space X.