Previous Page 2

Displaying 21 – 27 of 27

Showing per page

On the solvability of the Lyapunov equation for nonselfadjoint differential operators of order 2m with nonlocal boundary conditions

Aris Tersenov (2001)

Annales Polonici Mathematici

This paper is devoted to the solvability of the Lyapunov equation A*U + UA = I, where A is a given nonselfadjoint differential operator of order 2m with nonlocal boundary conditions, A* is its adjoint, I is the identity operator and U is the selfadjoint operator to be found. We assume that the spectra of A* and -A are disjoint. Under this restriction we prove the existence and uniqueness of the solution of the Lyapunov equation in the class of bounded operators.

On the spectrum of Robin Laplacian in a planar waveguide

Alex Ferreira Rossini (2019)

Czechoslovak Mathematical Journal

We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.

On Woronowicz's approach to the Tomita-Takesaki theory

László Zsidó (2012)

Banach Center Publications

The Tomita-Takesaki Theory is very complex and can be contemplated from different points of view. In the decade 1970-1980 several approaches to it appeared, each one seeking to attain more transparency. One of them was the paper of S. L. Woronowicz "Operator systems and their application to the Tomita-Takesaki theory" that appeared in 1979. Woronowicz's approach allows a particularly precise insight into the nature of the Tomita-Takesaki Theory and in this paper we present a brief, but fairly detailed...

Currently displaying 21 – 27 of 27

Previous Page 2